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ARTICLE INFO ABSTRACT

Keywords: Recent studies have shown that BN-cage has the potential to act as a detector for various biological molecules
Flutamide drug such as drugs. Using density functional theory (DFT), this research investigated how sensitive pure and Ru metal-
BN-cage . decorated BN-cage are to the anticancer drug flutamide (FLUT) at an electron level. In present work, calculations
l;::l;’::ry time at the DFT-D3 level were conducted applying B3LYP functional and 6-31++G(d,p) basis set to explore energetic,

geometric, and electronic characteristics of FLUT adsorption within pure BN nanocage and its modified forms.
Findings indicated that FLUT undergoes physical adsorption within the BN cage with E,q about —6.78 kcal/mol.
In system with Ru metal decoration, FLUT interacts moderately with —38.55 kcal/mol energy and exhibits a
satisfactory recovery time at ambient temperature (t = 2.74 x 10~2 s). The analysis of electronic sensitivity to
FLUT adsorption revealed that Ru@BN-cage exhibited higher sensitivity (AEgy,, = 89 %) than the pure cage.
Furthermore, when investigating potential of a work function (®) sensor, Ru@BN-cage exhibited the most
substantial response, with a 47.51 % alteration in system’s ® post gas adsorption. To sum up, due to observed
alterations in work function and energy gap, it can be concluded that Ru@BN nanocage is stable and has the
potential to serve as an electronic sensor material to specific detect of FLUT molecules in surrounding media.

Electronic sensitivity

1. Introduction as luteinizing hormone-releasing hormone (LHRH) agonists [7]. More-
over, ongoing work is investigating the potential uses of FLUT in treating

Cancer is a leading cause of death worldwide [1-3]. Some cancers a range of conditions and cancer types. Methods for detecting flutamide
can be cured if detected early and treated effectively [4-6]. A such as Soxhlet extraction system integrated with electrospray ioniza-
non-steroidal medication known as flutamide (FLUT) is chiefly used to tion (ESI) technique [8], spectrofluorimetric [9], and HPLC/UV [10].
treat prostate cancer, particularly in cases classified as locally advanced Furthermore, FLUT can be identified and detected through a variety of
or metastatic. It is often administered alongside a class of drugs known electrochemical techniques [11]. These techniques rely on the
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utilization of diverse sensors and electrodes, like sensors based on gra-
phene oxide (GO), screen-printed C electrodes, and diamond nano-
particles (SPCEs/DNPs) [12,13].Nowadays, different sensors have
different applications in various areas [14-18]. Mentioned sensors
demonstrated remarkable sensitivity with minimal detectable concen-
trations, outstanding selectivity and broad linear detection ranges for
identifying FLUT concentrations. They were effectively employed in
identifying flutamide in environmental samples like water bodies, as
well as biological samples like urine, plasma, and serum [19,20]. In
contrast to traditional analytical methods, thermal and electrochemical
sensors offer superior advantages. Mentioned sensors are cost-effective,
portable, compact devices that can operate autonomously. They provide
essential instrumentation with outstanding sensitivity and selectivity,
quick analysis times, and wide linear ranges. The crucial first step in
developing a new sensor for analyte detection involves selecting a
proper sensor material that interacts specifically with analyte of interest.
Interaction has been anticipated to cause a significant change in sensor
material’s thermal or electrical conductance. The interaction of drugs
with different surfaces is of great importance [21,22]. Various tech-
niques like chronoamperometry, cyclic voltammetry (CV), and electro-
chemical impedance spectroscopy (EIS) have been typically utilized in
this context. Investigations on FLUT has been widely investigated for its
sensing potential through theoretical methodologies and Density func-
tional theory (DFT) computations. Numerous investigations have
concentrated on understanding the manner in which FLUT has interac-
tion with various materials to advance biosensor technologies [23-26].
Through the utilization of advanced computational methods like DFT,
researchers have successfully examined reactivity behavior and
adsorption energy (E,gs) values of FLUT on metal-doped nanostructures,
incorporating elements such as Zn, Ni, and Cu [27]. Study outcomes
reveal that FLUT undergoes chemisorption on these nanostructures,
exhibiting varying adsorption energies and degrees of reactivity. Addi-
tionally, researchers have scrutinized electronic properties such as mo-
lecular orbital interactions and band gaps to understand better sensing
potential of these materials for FLUT. Mentioned works highlight sig-
nificance of theoretical approaches and DFT computations in exploring
sensing properties of FLUT and in the development of effective bio-
sensors for detecting this anti-cancer medication. Currently, nano-
materials find widespread application across diverse scientific and
industrial domains [28-30]. Distinct feature of various nanomaterial
classes enables their wide-ranging uses [31-33]. The compatibility of
nanomaterials with biological systems is crucial for effective utilization
in biomedical fields like drug delivery and biosensing. Biosensors are
analytical devices designed to identify and quantify a specific biological
analyte [34,35]. Biosensors are essential in the development of
advanced medical treatments and function as highly sensitive in-
struments for early disease detection [36-39]. Usually, a biosensor
comprises three primary components: detector, transducer, and bio-
logical element. Biological element recognizes analyte, producing a
response that the transducer translates into a measurable signal. This
signal is then amplified, processed, and displayed on an electronic de-
vice [40].

Nanomaterials are increasingly gaining global significance due to
their potential uses in different areas [41-45]. The include gas sensing
applications [46,47], ion removal [48-50], medicine [51], food packing
[52], and catalyst [53]. The advancement of boron nitrides, including
nanotubes (BNNT), nanocages ((BN),), 2D nanotubes (h-BN), and
nanoclusters (BgNg), for use as toxic gas sensors or in drug delivery has
captured the attention of research teams in recent years. This interest is
fueled by their potential for rapid detection, remarkable sensitivity, and
minimal recovery time. Nevertheless, use of pristine B;5N;2 nanocages
as sensors can be limited due to their relatively weak interactions with
the BN nanocage surface [54-58]. Functionalizing nanostructures via
transition metals (TMs) induces significant changes in their properties.
Use of DFT has enabled the exploration of the role of first-row TMs in
modifying nanostructures including nanotubes, nanocages, and
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macrocycles [59]. Density Functional Theory serves as a tool with sig-
nificant computational capabilities, capable of simulating complex
electronic structures and providing valuable insights in chemical
research. For instance, it has been instrumental in studying acetone
detection using WOs, exploring gas adsorption on various Xi2Yis
nanocages systematically, and analyzing phosgene adsorption on
copper-decorated BNNC [56,60,61]. DFT has further been utilized for
impact simulation of electric fields on interactions with toxic gases,
analyze macrocycles used in oxygen reduction reactions, and study
detecting NO gas on copper-modified B15N15 structures [54,59]. These
applications underscore the fundamental role that DFT has played in
research and advancement of gas sensor technologies over time. Silva
et al. [62] performed a comprehensive study of existing literature
focusing on BN-cages in their pristine form and after modifications
utilized in toxic gas detection, considering studies that employed DFT.

For FLUT sensing and adsorption, impact of modifications using
transition metals on B3N nanocages (BN-cages) lacks coverage in
scientific literature. Thus, objective of present work was to conduct a
theoretical investigation using DFT to examine how decorations of BN-
cage with transition metals (Ru) influence the interaction with FLUT
and assess suitability of modified BN-cage as a sensing material for
detecting FLUT drug in environmental settings.

2. Computational details

Gaussian 09 [63] has been applied for whole geometry optimization
and energy computations. Whole computations have been carried out
utilizing DFT approach at Lee-Yang-Parr exchange-correlation hybrid
functional (B3LYP) [64-66], which is extensively employed in investi-
gation of all-boron structures because of its widespread use in in-
vestigations [67,68]. A split valence double-{ basis set 6-31++G(d,p)
has been utilized along with corrected basis set superposition in com-
putations [69]. After optimizing the structures at specified level,
vibrational analysis has been conducted. Also, the LANL2DZ basis set
method was used for the Ru metal. Presence of only positive vibrational
frequencies verifies structural stability of optimized configurations. The
SCF convergence thresholds were set tightly to ensure reliable results,
with energy changes between iterations converged below 10~° Hartree
and density changes minimized appropriately. Integration grids were
sufficiently dense to balance accuracy and efficiency, avoiding errors
that could prevent SCF convergence. For spin states, especially con-
cerning Ru, an appropriate spin multiplicity was assigned given its
transition metal nature, accounting for potential open-shell configura-
tions. These computational parameters were chosen to achieve stable
and accurate modeling of the Ru@BN system. Natural bond orbital
(NBO) approach was employed to analyze charge transfer interactions
between BN-cage fullerenes and FLUT. Computation of HOMO-LUMO
energy gap (E;) was executed as follows:

E; = Erymo — Enomo (@)

Sensitivity of BN-cage towards FLUT was evaluated by analyzing
change in HOMO-LUMO E, as below [70,71]:

AFg = Be —Ba | 100% )
Egl
Herein, Eg values of pristine fullerenes and FLUT/BN-cage complexes
are stated by Eg; and Ego, respectively. Adsorption energy (Eags) for
interaction between FLUT drug and pure as well as decorated BN-cage
was determined using the formula:

Eugs = Ecomplex - EBN—cage - Edrug + Epsse (3)

Computation included consideration of zero-point energy (ZPE).
Based on Eq. (3), a negative E,qs signifies stability of FLUT/BN-cage
complexes.
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3. Results and discussion
3.1. FLUT adsorption over pristine BN-cage

Optimized structures, Molecular Electrostatic Potential (MEP) map,
and highest Occupied molecular orbital of FLUT have been displayed in
Fig. 1. Bond angles and distances are in good accordance with former
computational and experimental studies [72,73]. As indicated by the
MEP map, F and O atoms of the FLUT molecule displayed nucleophilic
features owing to existence of lone electron pairs. These electron pairs
are capable of effectively reacting with electron-deficient B atoms in BN-
cage.

FLUT has been placed at various positions in the BN-cage, like top of
heptagon or hexagon, with several B—N bonds connecting to its O, C,
and F atoms, arranged in both horizontal and vertical orientations. After
optimization, energetically most favorable configuration was achieved,
as illustrated in Fig. 2. The results revealed that FLUT molecule binds to
boron atoms of six-membered rings via its oxygen and fluorine atoms,
exhibiting E,gs of —6.87 kcal/mol. Furthermore, thermodynamic pa-
rameters such as AH and AG suggested that FLUT molecule undergoes
spontaneous and exothermic adsorption onto the pristine BN cage at
room temperature, indicating favorable interaction under ambient
conditions. In FLUT molecule, carbon—fluorine and nitrogen—oxygen
bond lengths measure 1.30 A and 1.19 A, respectively. Moreover,
O-N-O bond angle is 123.9°, while F-C-F angle is 34.8°. Post FLUT/BN
complex forming, mentioned bond distances and angles remained rela-
tively stable without significant changes. For FLUT, NBO charge in
complex is 0.08 e, suggesting a transfer of charge from FLUT to BN-cage,
with FLUT has electron donation role.

3.2. FLUT adsorption over Ru-decorated BN-cage

Former research has shown that ability of metal-decorated nanoc-
ages to adsorb molecules is substantially improved [74]. The design of
metal-decorated BN-cages has attracted significant interest because of
their versatility across different purposes. Hence, it is compelling to
investigate influence of metal decoration on sensing capabilities of BN-
cages. Consequently, effect of incorporating Ru with BN-cage over FLUT

adsorption has been explored. Initially, Ru has been positioned above
BN-cage without any symmetrical constraints. Following this, structure

e
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Fig. 1. The optimized structure and MEP map of FLUT molecule.
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(b)

Fig. 2. The optimized structure of (a) pure and (b) Ru decorated BN nanocage
complex with FLUT molecule.

had optimization without restrictions. For Ru@BN-cage, multiplicity
was chosen to be a doublet, and computations were performed using the
unrestricted method. It was observed that the Ru metal tended for
central area occupation. Analysis of geometrical configurations of
Ru@BN-cage indicates that the Ru decoration of the BN-cage does not
alter the cage structure. Following optimization, the Ru is situated at the
central top of the BN-cage, ensuring that no deformation is induced in
the BN-cage. To evaluate the stability of Ru on the BN-cage, the binding
energy of the transition metal on the BN-cage was calculated. This
binding energy was found to be greater than the cohesive energy of Ru in
its metallic lattice, which demonstrates the strong stability of Ru
adsorption on the BN-cage surface. This result indicates that Ru atoms
are energetically favored to remain attached to the BN-cage rather than
aggregating into bulk metal, confirming the robustness of the Ru@BN-
cage system for potential applications.
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Interaction of FLUT with Ru@BN-cage yields an interaction energy
of approximately —38.55 kcal/mol, significantly higher than that of the
pristine nanocage. This suggests that surface modification enhances the
nanocage’s affinity for FLUT. The intensified interaction is associated
with more notable changes in the drug’s bond lengths and bond angles,
indicating structural modifications upon adsorption. Moreover, a sig-
nificant NBO charge transfer of approximately 0.152 e takes place be-
tween the drug and the Ru@BN-cage, emphasizing substantial
electronic interaction. Such surface decoration of nanomaterials is
recognized for enhancing stability, targeting specificity, and drug
adsorption by modifying physicochemical properties and encouraging
stronger binding, as evidenced in recent research on nanoparticle
functionalization for drug delivery. Results indicate that altering the
surface of the nanocage effectively enhances both the strength and
specificity of interactions between drugs and nanostructures, which is
pivotal for improving drug delivery efficiency and therapeutic efficacy.
Correlation between energy gap and electrical conductance is expressed
as below [75]:

3/2 'Eg
6 = AT exp <m) 4)

Here, E; denotes energy gap between HOMO and LUMO levels, T
refers to absolute temperature, k stands for Boltzmann'’s constant, and ¢
represents electrical conductivity. Eq. (4) suggests that a decrease in Eg
results in an improvement in ¢ value and an enhancement in reactivity.
The band gap of Ru@BN-cage decreased from 2.83 eV to 1.50 eV after
drug adsorption, indicating an effective interaction between the drug
and the nanocage. In other words, the Eg of Ru@BN-cage decreased by
89 %, leading to increment in reactivity and ¢ value of these compounds
compared to the pure BN-cage. Sensitivity of both BN-cage and Ru@BN-
cage to FLUT drug was assessed using two parameters: E; and work
function (®). Previous research has indicated that Eg can be a reliable
indicator of a nanostructure’s responsiveness to different chemicals
[76].

As per Eq. 4, a decrease in Eg results in a substantial rise in .
Furthermore, influence of the FLUT over fullerenes and Fermi level has
been studied, as these are pivotal aspects in ®-type sensors, making use
of a Kelvin oscillator device to evaluate alterations in ® values before
and after molecule adsorption [77]. Adsorption of a molecule onto the
sensor leads to shifts in the Fermi level, which in turn modifies gate
voltage and generating an electrical signal essential for detecting
chemicals. Fermi level indicates energy needed electron removal from
system.

® = Vg + 00)-Ep ()

In this scenario, Ep stands for Fermi level energy, and V¢ refers to
electrostatic potential energy far from material’s surface, typically
assumed to be 0. As V.| approaches zero at an infinite distance, @ is
definable ad ® = -Ep. Fermi level energy is computed using the following
formula:

Er = Epowmo + Eg/2 (6)

Adjusting Eg could result in an alteration in amount of field emission
detected in a sensor, as outlined by classical Richardson-Dushman Eq.
[78]. Determination of alteration in ® because of adsorption of FLUT is
computed as below:

AD = % x 100% 7
@,

Here, ®; and @, correspond to work function values for the pristine
BN-cage and the FLUT/BN-cage complex, respectively. According to
data presented in Table 1, adsorption of FLUT molecule does not
significantly alter the work function of the BN-cage. While, the value ®
of Ru@BN-cage after FLUT was changed significantly, thus the Ru@BN-
cage is suggested as @ type sensors.
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Table 1
Adsorption energy (Eaqs), HOMO-LUMO gas (Eg), change of E; (%AEg) and work
function (®) and the change of ® (%A®).

System Eags (kcal/mol) Eg (eV) %AEg @ (eV) %AD
BN-cage - 5.86 - —4.59 -
FLUT@BN —6.78 4.92 —-15.97 —4.41 —-5.23
Ru@BN - 2.83 - —3.43 -
FLUT@RU-BN —38.55 1.50 —89 % -1.82 —47.51

E, values for FLUT/BN-cage and FLUT/Ru@BN-cage are 4.92 eV and
1.50 eV, respectively, in gaseous medium. A decrease in Eg results in
improvement in electrical conductance, as explained by eq. (4). Modi-
fications in Eg values prior and subsequent to complex formation
enhance sensitivity of decorated BN-cage compared to pristine BN-cage.
This alteration can be translated into an electrical signal, aiding in
adsorbate detection. Hence, it can be deduced that Ru@BN-cage shows
potential as a viable option for detecting FLUT, particularly as an elec-
tronic sensor. Recent research has thoroughly investigated how metal
doping influences material properties, involving a variety of metals, on
optical and electrical characteristics of substrate materials. In-
vestigations typically demonstrate that doping can substantially alter
the structural, electrical, and optical properties [79,80]. Ru-decorated
BN nanocage shows significantly better sensitivity and performance
for drug detection compared to other transition metal-doped nano-
structures. The presence of Ru enhances the interaction strength with
the target molecule, leading to stronger adsorption, larger changes in
electronic properties, and faster recovery times. These advantages make
Ru@BN a promising and more efficient nanosensor material for
detecting drugs like flutamide (see Table 2)

3.3. ELF and MEP analysis

ELF measurements indicate degree of electron localization, enabling
differentiation between low and high levels of localization. Its high
values suggest complete localization (covalent bonding), while low ELF
values indicate weak charge density (non-covalent bonding). In case of
isolated BN cage, results unveiled a consistent charge density distribu-
tion between nitrogen and boron atoms, with a higher density sur-
rounding nitrogen atoms in comparison to boron atoms of nanocages.
Nonetheless, upon inclusion of Ru metal within cage, a notable increase
in electron density area has been observed around a boron atom of
nanocage, obtaining a more negative charge. This phenomenon is
visualized in ELF (Fig. 3b). The same boron atom serves as site for drug
adsorption. ELF parameter indicates that, for boron nitride cage, A non-
covalent interaction is present between the drug and the nanocage (c).
Conversely, in case of drug adsorption over Ru@BN-cage, an electro-
static interaction akin to a poor polar covalent bond (d) is noted, as
revealed by ELF values from 0.45 to 0.67. These findings align with the
observed adsorption energy outcomes, validating the superior drug
adsorption on the surface of Ru@BN-cage in comparison with pristine
cage.

Table 2
Comparison of E,q, variation of AEg (%), variation %A® and recovery time for
FLUT drug on the different nano material.

Material Eaq (kcal/ AEg (%)  AD (%) t(s) Ref
mol)

Ru@BN-cage —38.55 —89.00 —47.51 2.74 x This
102 work

ZnO nanosheet —-20.62 -91.12 25.89 1.97 x [81]
1073

Na@B40-cage —3.70 —3.00 —3.24 4.16 x [82]
107°

graphdiyne —-18.31 —56.49 - - [83]

B303 —26.94 —37.10 - - [84]

nanosheet
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Fig. 3. The ELF graphs for the BN-cage and Ru@BN cage before and after adsorption of FLUT drug.

MERP illustrates electron density distribution across molecules, with
regions of cationic environments (positive) displayed in blue hues, and
areas of higher electronic charge density (negative) depicted in red. In
Fig. 4, MEP of isolated BN cage (a) verifies that electron accumulation
takes place around surrounding nitrogen, while the lowest electron
density is observed surrounding boron atoms. As the FLUT molecule
approaches, a positive region develops in BN (b), particularly on side
where drug’s oxygen atom comes close. In the Ru@BN-cage (c) system, a
deviation into symmetrical charge distribution of nanocage has been
noted, with emergence of an area exhibiting considerable electronic
density over a boron atom, aligning with the observations in ELF.
Moreover, the MEP of the FLUT/Ru@BN-cage system (d) illustrates a
decrease in electron density within nanocage (blue) and a rise in elec-
tron density (red) over gas molecule. This observation supports and
validates transfer of charges forecast from cage to gas as indicated by
NBO data. Notably, MEP of FLUT/Ru@BN-cage system clearly demon-
strates a more pronounced transfer of charges from cage to FLUT
compared to other encapsulated configurations. This signifies presence
of strong back-donation within system, accounting for cage’s heightened
sensitivity to gas. Consequently, MEP and ELF analyses confirm that
doping BN cage with Ru yields a nanocage that, in comparison to the
FLUT molecule, exhibits enhanced sensitivity, improved thermody-
namic stability, moderate physisorption, increased charge transfer, and
strong potential for sensor applications.

3.4. Recovery time (z)

Significant interactions are vital in the advancement of electronic
sensors, rendering the desorption process complex. Even in absence of

theoretical backing, evaluating response time proves to be difficult.
Nonetheless, 7 can be assessed utilizing transition state theory. As per
Eq. (8), enhancing E,q4s will lead to a prolonged 7 for interaction [85]:

1 'Eads
T= 5 exp (F) 8

Herein, k presents Boltzmann constant, v is attempt frequency to
10'2 Hz, and ambient temperature (298.15 K) has been indicated by T.
Eaqs is exponentially related 7. Value of 7 for BN-cage and Ru@BN-cage
are 1.89 x 107® and 2.74 x 1072 s respectively. These findings indicate
that both BN have small 7z value, and FLUT is reversibly adsorbed. Re-
sults suggest that 7 of Pramipexole molecules from Au surfaces at 298 K
is similar, spanning from 1.2 milliseconds to around 105 s [86]. In a
distinct study, ¢ for adrucil/Al-doped phagraphene (ADP) complex has
been determined to be approximately 4.09 x 10'® s at similar temper-
ature [87]. This implies that ADP demonstrates an extraordinarily
extended 7, making it ineffective for use as a drug carrier.

Ru@BN nanocage offers enhanced FLUT detection compared to
previously studied metal-doped BN nanostructures by showing stronger
adsorption energy, higher electronic sensitivity (89 % change in energy
gap), a more significant work function response (47.51 % change), and
faster recovery time. These improvements highlight the unique advan-
tage of Ru decoration in increasing selectivity and sensing efficiency,
setting Ru@BN apart as a novel, more effective sensor material for FLUT
detection.

3.5. Solvent effect

The influence of HyO solvent on the adsorption of the FLUT drug on
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Fig. 4. Molecular electrostatic potential (MEP) map for the BN-cage and Ru@BN cage before and after adsorption of FLUT drug.

the Ru@BN-cage was considered using the Polarizable Continuum
Model (PCM) method. The FLUT drug, Ru@BN-cage, and their complex
were re-optimized in water. The calculations revealed that the interac-
tion between FLUT and Ru@BN-cage slightly weakened in the solvent
environment, with the adsorption energy (E,q) decreasing to —27.88 kJ/
mol. This approach ensures more realistic modeling of practical aqueous
sensing conditions while maintaining computational efficiency. The
influence of Hy0 solvent on the adsorption of the FLUT drug on the
Ru@BN-cage was considered by means of the PCM method. We once
more optimized the FLUT drug, Ru@BN-cage, and complex with drug in
the water. The calculations show that the interaction between FLUT
drug and Ru@BN-cage slightly weakened and the E,q decreased to
—7.62 kcal/mol. However, one can write:

AEad-sol-gas = Ead-solution‘Ead-gas =3.32 kcal/mol (C))

where AEag.sol.gas is the difference between the Eaq.solution Of FLUT in the
gas phase and H,O solvent. To further scrutinize this issue, the solvation
energies (AEgojution) Of the FLUT, Ru@BN-cage, and FLUT/Ru@BN-cage
were computed using the next equation:

AEsolution = Esolution'Egas (10)

where Egolution OF Egas is the energy of a system in the H,O solvent or gas.
The calculated solvation energies (Agsolution) for the FLUT drug, Ru@BN-
cage, and the FLUT/Ru@BN-cage complex are —5.63, —7.29, and —
15.98 kcal/mol, respectively. These results indicate that the solvation
energy of the FLUT/Ru@BN-cage complex is less negative than the sum
of the solvation energies of the individual FLUT drug and Ru@BN-cage
components. This suggests that both the FLUT drug and Ru@BN-cage
are highly polar systems with strong solubility in water. Consequently,
water molecules tend to surround the FLUT drug and the Ru@BN-cage,
which partially hinders their direct interaction.

4. Conclusion

Through DFT computations, we investigated FLUT adsorption over
surfaces of both pristine and Ru-decorated BN-cage to develop an elec-
tronic sensor to detect FLUT anticancer medication. Findings indicated
that the interaction between Ru@BN-cage and drug has been slightly
stronger compared to the interaction between FLUT and the unmodified
BN-cage. The thermodynamic analysis of the FLUT adsorption process
revealed physical adsorption, identified as spontaneous and exothermic
at ambient temperature. Remarkably, drug adsorption resulted in a
reduction in Eg of BN-cage. Eg decline serves to boost electrical
conductance of BN-cage, consequently producing an electrical signal.
The produced signal serves as a dependable indicator of the FLUT
anticancer medication’s attendance, indicating that both the pristine
and Ru-decorated forms of the BN-cage have potential as electronic
sensors to detect FLUT. Investigation also disclosed that ® of pristine
BN-cage remains unaltered after the adsorption of FLUT molecules,
whereas the Ru decoration of the BN-cage experiences a notable shift in
the work function. As a result, the work function of the Ru-decorated
configuration is suggested for deployment as ®-type sensors. The only
exception is the FLUT/Ru@BN-cage system, exhibiting moderate phys-
isorption (with Eyqs = —38.55 kcal/mol) and a rapid recovery time at
ambient temperature (t = 2.74 x 1072 s). MEP and ELF outcomes
validate the observed shifts in Eg following adsorption, emphasizing
poor interaction between medication and unaltered BN-cage, as well as
covalent characteristic of interaction between Ru@BN-cage and drug.
These features underscore FLUT/Ru@BN-cage system as a highly pro-
spective contender for utilization in sensors designed for FLUT drug
detection.
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