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A B S T R A C T

Artificial Intelligence (AI) has emerged as a critical solution to address persistent challenges hindering renewable 
energy adoption, including resource intermittency, grid integration complexities, and economic barriers. This 
review synthesizes recent advancements, highlighting AI’s capability to significantly enhance renewable energy 
systems through improved forecasting accuracy, optimized resource allocation, and heightened operational ef
ficiency. The findings demonstrate AI-driven predictive models’ effectiveness in aligning energy generation with 
demand, reducing operational downtime via predictive maintenance, and stabilizing energy distribution in AI- 
powered smart grids. Further, AI facilitates efficient management of decentralized energy networks, including 
microgrids, and enhances energy storage solutions to maintain reliability during low-generation periods. AI’s 
contribution to refining electrolysis processes significantly boosts green hydrogen viability, offering promising 
decarbonization pathways for energy-intensive industries. Evidence from various international case studies 
underscores AI’s transformative impact, notably in wind and solar forecasting and hybrid system optimization, 
driving cost reductions and broadening renewable energy access, especially in developing regions. The paper 
suggests prioritizing research on fully autonomous smart grids and advanced storage solutions to further enhance 
scalability, reliability, and support global Net-Zero ambitions. Additionally, addressing the societal and envi
ronmental implications of AI deployment remains essential for maximizing its sustainable impact in transforming 
the global energy landscape.

1. Introduction

The transition toward renewable energy sources is an imperative 
step in combating climate change and reducing global dependency on 
fossil fuels. The burgeoning field of renewable energy, including solar, 
wind, hydro, and biomass, has been recognized as pivotal for sustainable 
development. Despite the progress, the inherent intermittency and 
variability of these energy sources present substantial challenges in their 
integration into existing power grids [1]. For instance, the unpredict
ability of wind patterns and solar irradiance can lead to fluctuations in 

power generation, necessitating advanced solutions for energy storage 
and grid management [2]. Furthermore, the geographical limitations 
and resource availability pose significant challenges, often requiring 
long-distance transmission that can lead to increased energy loss and 
higher costs [3,4]. These challenges underscore the need for innovative 
technologies that can ensure the efficient harnessing, storage, and dis
tribution of renewable energy. AI’s potential to enhance forecasting, 
facilitate demand response strategies, and optimize supply chains 
alignment directly with the need for more resilient and adaptive energy 
systems [5].
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AI is poised to revolutionize the renewable energy sector by 
enhancing operational efficiency and enabling smarter energy man
agement systems. AI algorithms are particularly adept at analyzing large 
volumes of data from various sources, including weather stations, en
ergy consumption patterns, and grid condition sensors [6]. This capa
bility allows for precise forecasting of energy demand and supply, which 
is crucial for balancing the grid and reducing waste. For instance, 
AI-driven predictive maintenance can anticipate equipment malfunc
tions before they occur, significantly reducing downtime and mainte
nance costs [7]. Moreover, AI can optimize the placement and operation 
of renewable energy installations. In solar energy systems, AI can 
analyze historical weather data to predict solar irradiance and adjust the 
angle of panels to maximize energy capture [8]. Similarly, in wind en
ergy systems, AI algorithms can optimize turbine operations based on 
real-time wind speed and direction data, enhancing energy output while 
minimizing wear on the turbines [9]. The integration of AI not only 
bolsters the efficiency of renewable energy systems but supports the 
deployment of microgrids and decentralized energy systems, which are 
vital for energy access in remote and underserved regions [10].

Despite the promising advancements brought by AI in renewable 
energy, several challenges and considerations must be addressed to fully 
harness its potential. The integration of AI into renewable energy sys
tems raises concerns regarding cybersecurity, as increased connectivity 
can make energy infrastructures more susceptible to cyber-attacks [11]. 
Ensuring the security of data and systems is paramount to maintaining 
the reliability and integrity of energy supply. Additionally, the deploy
ment of AI technologies requires substantial initial investments and 
skilled human capital, factors that can be prohibitive for developing 
countries [12]. There is a pressing need for regulatory frameworks that 
can keep pace with the rapid advancements in technology, ensuring that 
innovations in AI and renewable energy are deployed responsibly and 
equitably [13]. To this end, collaborative efforts among governments, 
industry stakeholders, and academic institutions are essential to create 
conducive environments for the co-evolution of AI and renewable en
ergy technologies. These collaborations can facilitate the sharing of best 
practices, development of standardized protocols, and implementation 
of pilot projects that demonstrate the practical benefits of AI in 
enhancing the resilience and sustainability of energy systems.

Table 1 illustrates the longitudinal progress achieved through the 
integration of AI into renewable energy systems from 2020 to 2023 
across six pivotal dimensions: production optimization, storage and grid 
stability, renewable energy integration, economics and cost reduction, 
environmental impact, and social and ethical impacts. The observed 
period, AI demonstrated remarkable improvements, achieving more 
than a fourfold enhancement in all categories.

The improvement factor (IF) is mathematically modeled as: 

IF=V2023 / V2020 (1) 

where, IF is the improvement factor (dimensionless), V2023 is the 
measured value (%) in the year 2023, V2020 is the measured value (%) 
in the baseline year 2020.

The resulting IF values signify the extent of enhancement achieved 
by implementing AI technologies within each category over the 
analyzed period.

1.1. Research gap

Significant progress has been made in renewable energy technolo
gies, accompanied by increasing integration of AI to enhance these 
systems. However, notable gaps remain in fully understanding AI’s po
tential impacts on global energy transformations. A primary research 
gap is the scarcity of comprehensive longitudinal studies quantifying the 
long-term efficiency, economic advantages, and scalability of AI-driven 
renewable energy solutions across diverse geographical and economic 
conditions. Additionally, ethical considerations, regulatory frameworks, 
and societal implications related to adopting AI in renewable energy 
remain inadequately explored, especially in developing countries with 
pronounced resource limitations and less-developed policy structures. 
With renewable generation costs decreasing rapidly, integration, grid 
stability, and sector coupling have emerged as critical barriers toward 
achieving net-zero energy systems. Although AI holds significant 
promise in overcoming these bottlenecks, existing research tends to 
address isolated aspects or lacks consistent longitudinal analysis neces
sary for robust conclusions.

1.2. Study objective

The primary aim of this study is to explore the synergistic integration 
of renewable energy and AI, highlighting their combined potential to 
drive sustainable global energy transformations. The research specif
ically investigates how AI can optimize critical aspects such as the 
generation, storage, and distribution of renewable energy resources 
including solar, wind, and hydropower while addressing inherent 
challenges such as variability, operational inefficiencies, and economic 
barriers. Employing analysis of real-world case studies and successful AI 
implementations, the paper demonstrates AI’s capability to significantly 
enhance forecasting accuracy, grid stability, and overall energy effi
ciency, concurrently reducing operational costs and environmental 
emissions. Furthermore, the study emphasizes the importance of sup
portive policies, strategic investments, and cross-sector collaborations to 
facilitate large-scale AI adoption in renewable energy systems. Ulti
mately, this work provides actionable recommendations for key stake
holders and outlines future research directions, fostering continuous 
advancement toward an equitable, resilient, and sustainable energy 
future.

2. Renewable energy technologies

The development of renewable energy technologies has been char
acterized by significant milestones and ongoing advancements that have 
shaped the contemporary landscape of sustainable energy systems. The 
exploitation of renewable sources such as wind, water, and solar energy 
have ancient roots, but the modern era of renewable energy really 
started to form in the late 19th and early 20th centuries. A critical early 
development was the establishment of the first hydroelectric power 
plant in 1882 on the Fox River in Wisconsin, USA, which was a crucial 
step in the use of water for electricity generation [15]. Concurrently, 
Charles F. Brush’s creation of the first wind turbine for electricity pro
duction in Cleveland, Ohio, highlighted the potential of wind energy 
[16]. However, a significant shift in attitude towards renewable energy 
did not occur until the 1970s oil crisis, which highlighted the finite 
nature of fossil fuels and the geopolitical risks associated with their 
extraction and supply [17]. This period witnessed increased 

Table 1 
Longitudinal dashboard of AI progress used in renewable energy (2020–2023) 
[14].

Category 2020 
(%)

2021 
(%)

2022 
(%)

2023 
(%)

Improvement 
Factor (IF) 
(2020–2023)

Production 
Optimization

10 20 30 45 4.5 ×

Storage & Grid 
Stability

8 18 28 40 5.0 ×

Renewable Energy 
Integration

7 15 25 35 5.0 ×

Economic & Cost 
Reduction

6 13 20 28 4.7 ×

Environmental 
Impact

4 9 15 22 5.5 ×

Social & Ethical 
Impacts

5 12 20 30 6.0 ×
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governmental and scientific interest in alternative energy sources, 
spurring early investments in technology research, including solar 
photovoltaics (PV), which, while originally developed for space appli
cations in the 1950s, started to be recognized as viable for terrestrial 
applications [18].

Technological advancements have been vital in the evolution of 
renewable energy, greatly enhancing the efficiency and reducing the 
costs of these technologies. In solar energy, the development of crys
talline silicon cells in the 1950s marked a significant breakthrough, 
laying the groundwork for the commercial solar PV industry [19]. Over 
the years, continual improvements in material science and 
manufacturing processes have significantly boosted solar cell effi
ciencies and cut costs, making solar one of the fastest-expanding energy 
sources globally [20]. Wind energy technology has undergone trans
formative changes, with modern horizontal-axis turbines vastly differing 
from their traditional counterparts. Advances in turbine technology, 
materials, and design have not only boosted turbine efficiency but 
facilitated the creation of larger units capable of generating substantial 
electricity, leading to a reduction in wind energy costs and its emergence 
as a mainstream energy source [21]. The deployment of smart grids and 
AI-based monitoring systems has further optimized the efficiency and 
integration of these renewable systems within the existing energy 
infrastructure [22].

Yet, the progression of renewable energy technologies continues to 
evolve, necessitating ongoing research and innovation to surmount 
existing challenges and unlock new possibilities. Integrating renewable 
sources into national grids presents technical challenges due to their 
intermittent nature and the necessity for robust energy storage solu
tions. Recent advancements in battery technology, such as lithium-ion 
and solid-state batteries, present promising prospects for energy stor
age, addressing the variability of wind and solar energies [23]. Addi
tionally, the exploration of innovative materials and technologies, such 
as perovskite solar cells and floating wind turbines, promises to further 

revolutionize the sector by potentially offering higher efficiencies and 
new deployment avenues, such as in deep ocean waters [24]. Further
more, the increasing focus on sustainability is driving improvements in 
the life cycle assessments of renewable technologies, ensuring minimal 
environmental impact from production to disposal. This comprehensive 
approach to development is essential as the world strives to meet the 
growing energy demand sustainably and responsibly [25]. Fig. 1 show 
the timeline detailing the evolution of renewable energy technologies 
from the late 19th century through to the present, illustrating significant 
milestones in the development of hydroelectric power, wind turbines, 
solar PV, smart grid technology, advanced wind and solar solutions, and 
energy storage systems.

The evolution of renewable energy technologies has been charac
terized by continuous innovation, significantly enhancing their effi
ciency, scalability, and accessibility over time. Early milestones, such as 
the establishment of hydroelectric power plants and the development of 
wind turbines, paved the way for modern advancements in solar and 
wind energy systems. Today, innovations in material science, AI-driven 
smart grids, and energy storage solutions, such as lithium-ion and solid- 
state batteries, address key challenges such as intermittency and inte
gration into national grids. Emerging technologies, including perovskite 
solar cells and floating wind turbines, promise to revolutionize renew
able energy deployment further. With a growing emphasis on sustain
ability and minimizing environmental impact, renewable energy 
technologies continue to evolve, playing a crucial role in meeting global 
energy demands responsibly and sustainably.

2.1. Data and pre-processing

The data and pre-processing methods involve comprehensive data 
acquisition, cleaning, normalization, and transformation procedures. 
Detailed meteorological data (solar irradiance, wind speed, tempera
ture, humidity), grid operation metrics (power output, demand loads, 

Fig. 1. Timeline of the renewable energy technologies and their evolution [26–28].
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grid frequency), and economic parameters (energy prices, operational 
costs) are utilized. The dataset undergoes rigorous quality checks to 
remove anomalies and fill gaps using interpolation techniques. Data 
normalization employs min-max scaling to ensure compatibility across 
diverse features, enhancing the performance of AI algorithms. Addi
tionally, time-series data is formatted into structured sequences 
compatible with forecasting and optimization algorithms, with clearly 
defined look-back windows and prediction horizons to facilitate robust 
AI model training.

2.2. Algorithmic foundations

Four complementary AI architectures are employed to address the 
key tasks of forecasting, control, and optimization within renewable 
energy systems: 

(i) A two-layer Sequence-to-Sequence (Seq2Seq) Long Short-Term 
Memory (LSTM) network with

hidden dimension of 128 and a look-back period of 48 intervals (5- 
min resolution) is utilized for precise short-term forecasting. The 
training objective minimizes the mean squared error (MSE) loss: 

LLSTM =‖yn − y‖2 (2) 

where yn and y represents predicted values and actual observed values. 

(ii) The Temporal-Fusion Transformer (TFT) with model dimension 
and attention heads captures complex temporal dependencies 
and multi-horizon forecasting contexts. TFT employs a composite 
loss function combining quantile regression and scale-norm reg
ularization, defined as:

LTFT =
∑

τ∈{0.1,0.5,0.9}

∑

t
ρτ

(
yt − yn, t,τ

)
+ λ‖θ‖2 (3) 

where ρτ is the quantile loss at quantiles y t is the predicted quantile at 
time t, yn t,τ is the observed value, λ is a regularization coefficient, and θ 
are the model parameters. 

(iii) Deep Reinforcement Learning (DRL) with a Deep Q-Network 
(DQN) approach optimizes grid operation and energy distribu
tion. The DQN leverages a neural network to approximate the 
optimal action-value function, optimized by minimizing the 
temporal difference error:

LDQN = E
[
(rt + γ maxaʹQ(st+1, aʹ; θ− ) − Q(st , at ; θ))2] (4) 

where rt denotes the immediate reward, γ the discount factor, st the 
current state, at the selected action, θ− parameters of the target network, 
and θ the policy network parameters. 

(iv) The GA optimizes hybrid renewable system configurations. The 
GA explores a solution space defined by parameters (e.g., panel 
orientations, battery capacities) to minimize a cost function 
combining capital expenditures, operational expenditures, and 
penalties for unmet demand:

CGA =Ccapex + Copex + Cpenalty (5) 

The GA process involves selection, crossover, mutation, and elitism 
phases iteratively applied until convergence.

3. Role of AI in enhancing renewable energy systems

Artificial Intelligence (AI) plays a transformative role in optimizing 
the production of renewable energy by enhancing forecasting, system 
efficiency, and resource utilization. AI-powered algorithms are 

extensively used to predict weather patterns, enabling accurate fore
casting of solar and wind energy generation. For example, advanced 
machine learning models analyze meteorological data and historical 
performance to predict solar irradiance and wind speeds, ensuring 
optimal alignment of energy production with demand [26]. AI facilitates 
real-time monitoring and maintenance of renewable energy systems. 
Using predictive analytics, AI can identify potential issues in solar panels 
or wind turbines before they escalate into costly failures, reducing 
downtime and operational costs [27]. Furthermore, AI-driven systems 
adjust operational parameters dynamically, maximizing energy output 
even under fluctuating environmental conditions, thereby increasing the 
efficiency and reliability of renewable energy installations [28].

3.1. Applications of AI in renewable energy systems

In energy distribution, AI optimizes grid operations and enhances the 
integration of renewable energy sources into traditional power systems. 
Smart grids powered by AI use real-time data analytics to balance supply 
and demand effectively, avoiding grid overloads and power outages 
[29]. AI algorithms enable adaptive load management, redistributing 
power intelligently based on consumption patterns and renewable en
ergy availability. This not only improves grid stability but supports the 
seamless integration of intermittent energy sources such as wind and 
solar [30]. Additionally, AI plays a pivotal role in energy storage man
agement by predicting usage trends and optimizing battery perfor
mance, ensuring that renewable energy is stored efficiently and 
dispatched during peak demand periods [31].

On the consumption side, AI empowers consumers and industries to 
manage energy usage intelligently, promoting sustainability and cost 
savings. AI-enabled smart devices and home energy management sys
tems provide users with real-time insights into their energy consump
tion, offering recommendations to reduce waste and lower bills [32]. In 
industrial applications, AI enhances energy efficiency by optimizing 
production processes and equipment usage, aligning energy consump
tion with renewable energy availability [33]. Furthermore, AI supports 
demand response programs, where consumers adjust their energy use 
based on price signals or grid conditions, fostering a more resilient and 
flexible energy ecosystem. Optimizing production, distribution, and 
consumption, AI is driving the renewable energy sector towards greater 
efficiency, sustainability, and accessibility, ensuring its role as a 
cornerstone of the global energy transition [34]. Fig. 2 illustrates the 
diverse applications of AI technology integration across various sectors, 
highlighting its central role in optimizing systems, enhancing efficiency, 
and promoting sustainable development. It emphasizes the intercon
nectedness of AI-driven solutions, demonstrating their ability to 
streamline operations, improve energy management, and support smart 
infrastructure in both residential and industrial contexts. Through its 
adaptive and predictive capabilities, AI is positioned as a transformative 
force in modernizing critical systems and achieving global sustainability 
goals.

3.2. AI tools applied in renewable energy technologies

AI is revolutionizing renewable energy technologies through a 
diverse range of tools that enhance efficiency, reliability, and scalability. 
As highlighted in Fig. 3, AI tools are significantly advancing renewable 
energy technologies by optimizing production, distribution, and man
agement processes. Machine Learning (ML) is one of the most widely 
used AI tools, particularly for predictive analytics in energy demand and 
weather forecasting. Applying ML in solar, wind, and biomass energy 
systems, operators can improve energy production efficiency, reduce 
operational costs, and enhance forecasting accuracy [35]. For instance, 
ML models help predict energy generation by analyzing weather data, 
enabling proactive adjustments to operations and ensuring optimal en
ergy output. Similarly, ML-driven analytics empower energy companies 
to anticipate and adapt to fluctuations in demand, avoiding 
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overproduction or shortages [36].
Deep Learning (DL) and Reinforcement Learning are particularly 

impactful in optimizing complex systems and improving grid stability. 
Deep Learning, which excels in modeling non-linear energy systems, is 
highly effective in fault detection and performance optimization for 
wind turbines and photovoltaic systems. Processing vast datasets, DL 
algorithms identify potential system faults early, minimizing downtime 
and maintenance costs [37]. Reinforcement Learning, on the other hand, 
focuses on dynamic grid control and energy storage management. It 
enables real-time adaptation to demand fluctuations, ensuring grid 
stability and optimizing energy dispatch across smart grids and battery 
systems. This ability to adapt to changing conditions makes reinforce
ment learning invaluable for managing renewable energy’s inherent 
intermittency [38].

Other AI tools, such as Genetic Algorithms, Bayesian Networks, and 

Digital Twins, address unique challenges in renewable energy. Genetic 
Algorithms are used to optimize hybrid energy systems, such as solar- 
wind combinations, by finding configurations that maximize efficiency 
while minimizing costs [39]. Bayesian Networks enhance forecasting 
reliability by accounting for uncertainties in solar, wind, and geothermal 
energy predictions [40]. Meanwhile, Digital Twins create virtual simu
lations of renewable energy systems, enabling predictive maintenance 
and operational optimization. These tools not only improve energy 
system performance but reduce costs, enhance reliability, and 
contribute to the scalability of renewable technologies. Together, these 
AI tools are transforming the renewable energy sector, ensuring sus
tainable energy solutions for a greener future [41].

Fig. 2. AI applications in renewable energy systems.

Fig. 3. AI tools and their applications in renewable energy technologies.
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3.3. Efficiency improvements driven by AI tools in renewable energy 
technologies

The AI tools efficiency of renewable energy technologies has wit
nessed significant improvements between 2020 and 2023, as illustrated 
in Fig. 4. Solar energy efficiency increased from 2.5 % in 2020 to 4.5 % 
in 2023, demonstrating steady progress driven by advancements in 
photovoltaic materials and AI-driven optimization [42]. Similarly, wind 
energy efficiency rose from 2 % in 2020 to 3.7 % in 2023, with 
AI-powered tools such as Deep Learning improving turbine performance 
and fault detection [43]. These advancements reflect the industry’s 
ability to enhance production while reducing operational costs.

Energy storage systems experienced the most substantial efficiency 
improvements, jumping from 5 % in 2020 to 9.5 % in 2023. This growth 
is attributed to innovations in AI-managed battery systems, which 
optimize storage-discharge cycles and improve the reliability of 
renewable energy supply [44]. Grid stability improved, rising from 2.8 
% in 2020 to 4 % in 2023, facilitated by AI-driven smart grids and 
real-time energy distribution algorithms [45]. These systems ensure 
better integration of intermittent renewable energy sources into tradi
tional grids. Hybrid energy systems, which combine solar, wind, and 
storage technologies, achieved notable efficiency gains, increasing from 
3 % in 2020 to 6 % in 2023. AI tools such as Genetic Algorithms have 
optimized hybrid system layouts, enhancing their performance and 
cost-effectiveness [46]. These advancements highlight the trans
formative role of AI in driving efficiency improvements across various 
renewable energy technologies, fostering a more sustainable energy 
future.

Breakthroughs in energy storage, with efficiency improvements 
reaching 9.5 % in recent years, underscore the role of AI in overcoming 
intermittency challenges and ensuring reliable energy supply. Addi
tionally, AI-enabled solutions for hybrid systems and grid stability have 
optimized resource utilization and enabled seamless integration of re
newables into traditional energy networks.

Fig. 5 shows the performance uplift of advanced models on the 2024 
test set, highlighting gains across three key tasks: for 24-h generation 
forecasting, the TFT reduces mean absolute error from 6.1 % with an 
LSTM baseline to 4.3 % (− 29 %); in grid-stability control, the graph- 
neural-network-reinforcement-learning (GNN-RL) approach halves 
voltage-violation incidents from 20 to 10 per 1000 events (− 50 %); and 
for electrolyser dispatch, the DQN cuts green-H2 cost from $ 5 kg− 1 to $ 
4 kg− 1 (− 20 %).

4. Benefits of AI in energy transformations

The role of AI in energy transformations is pivotal, driving efficiency, 
resilience, and sustainability across global energy systems. AI optimizes 
energy production, distribution, and storage, enabling the seamless 
integration of renewable sources such as solar and wind into traditional 
grids. AI enhances scalability by analyzing large datasets to predict 
energy demand, improve system performance, and reduce inefficiencies. 
It strengthens resilience by enabling real-time monitoring and predictive 
maintenance, ensuring grid stability even during disruptions caused by 
climate change or other external factors. Additionally, AI fosters sus
tainability by maximizing the utilization of renewable resources, mini
mizing energy waste, and supporting demand response programs to 
balance supply and demand. Through these innovations, AI is trans
forming the energy sector, accelerating the shift toward a cleaner, more 
reliable, and sustainable energy future.

AI plays a crucial role in enabling the scalability of energy systems, 
making large-scale transitions to renewable energy more feasible and 
efficient. Advantage of advanced algorithms, AI optimizes the operation 
of renewable energy technologies, such as wind turbines and solar 
panels, by predicting weather conditions and adjusting system param
eters dynamically [47]. This ability to analyze and manage vast amounts 
of data allows for the integration of renewable energy sources into larger 
grid infrastructures without compromising reliability. Furthermore, 
AI-powered tools such as Genetic Algorithms and Reinforcement 
Learning help design and implement hybrid energy systems, ensuring 
optimal resource utilization while reducing inefficiencies. These in
novations make it possible to expand renewable energy adoption across 
regions and at scales previously considered unachievable [48].

AI enhances the resilience of energy systems by enabling grids to 
respond effectively to disruptions caused by climate change, natural 
disasters, or other external factors. Smart grids, powered by AI, 
continuously monitor and analyze grid performance, detecting anoma
lies and initiating corrective measures in real time [49]. For example, 
during extreme weather events, AI systems can redistribute energy re
sources or predict potential outages, minimizing downtime and ensuring 
a stable energy supply. Additionally, AI’s predictive maintenance ca
pabilities extend the lifespan of renewable energy assets, reducing sys
tem failures and operational costs. This resilience ensures that 
renewable energy systems can reliably meet growing energy demands 
even under adverse conditions [50].

AI significantly contributes to sustainability by maximizing the uti
lization of renewable energy resources and reducing greenhouse gas 
emissions. Through advanced energy storage management, AI ensures 
that surplus renewable energy is efficiently stored and dispatched dur
ing periods of low production, minimizing energy waste [51]. It facili
tates demand response programs, where energy consumption is adjusted 
based on grid conditions, further promoting energy efficiency. 

Fig. 4. Efficiency improvements using AI tools in renewable energy technolo
gies [45,46].

Fig. 5. Performance uplift of advanced models on the 2024 test set. The 
grouped bars compare baseline and advanced algorithms.
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Moreover, AI-driven insights enable policymakers and industries to 
make informed decisions about renewable energy investments, sup
porting a global shift towards cleaner energy systems.

Fig. 6 illustrates the comprehensive role of AI in transforming the 
global energy landscape by addressing key areas such as renewable 
energy integration, efficiency, sustainability, and equity. AI enhances 
forecasting for solar and wind energy, improving grid stability and 
supply-demand balance. It drives energy efficiency through smart grids 
and optimized energy storage systems, while supporting decentralized 
systems such as microgrids and energy trading for greater resilience. AI 
accelerates innovation by advancing renewable technologies and 
climate modeling, aiding strategic planning.

5. AI optimizes energy smart grids

AI plays a crucial role in optimizing smart grids by enabling real-time 
monitoring, predictive analytics, and adaptive energy management. 
Through advanced machine learning algorithms, AI can analyze large 
volumes of data from distributed energy resources, sensors, and con
sumer devices to predict energy demand and adjust supply dynamically 
[52]. This capability ensures that smart grids maintain balance and 
reliability, even when integrating intermittent renewable energy sources 
such as solar and wind. For instance, AI systems can forecast energy 
consumption patterns and optimize the distribution of energy, reducing 
inefficiencies and minimizing energy losses [53]. AI-driven automation 
facilitates faster responses to grid disturbances, such as outages or 
overloads, enhancing overall grid stability and resilience [54]. 
Furthermore, AI enhances the energy storage management within smart 
grids by optimizing battery performance and discharge cycles. By pre
dicting periods of high demand or low renewable energy production, AI 
ensures that stored energy is utilized efficiently, reducing dependence 
on fossil fuels [55]. AI supports decentralized grid operations by 
enabling seamless communication between microgrids and central 
grids, fostering flexibility and resilience in energy systems [56]. Smart 
grids powered by AI can facilitate demand response programs, where 
consumers adjust their energy usage based on real-time price signals or 
grid conditions, further improving efficiency and reducing costs [57].

The global progress in optimizing energy smart grids using AI has 

been remarkable, as shown in Fig. 7, with substantial improvements 
across several areas. Energy demand forecasting, a critical component of 
smart grid optimization, witnessed the highest growth, improving from 
12 % in 2020 to 33 % in 2023. This progress is driven by AI’s ability to 
analyze large datasets and predict consumption patterns, ensuring better 
alignment between energy generation and demand. Similarly, grid sta
bility enhancement improved from 10 % in 2020 to 30 % in 2023, 
showcasing how AI technologies such as real-time monitoring and pre
dictive analytics have strengthened grids to handle disruptions and 
fluctuations more effectively.

The progress includes renewable energy integration efficiency, 
which increased from 8 % in 2020 to 25 % in 2023, demonstrating AI’s 
role in seamlessly incorporating intermittent energy sources such as 
solar and wind into traditional grids. Fault detection and maintenance 
efficiency rose from 7 % to 22 % during the same period, reflecting the 
growing adoption of AI for predictive maintenance and anomaly 

Fig. 6. Key roles of AI in energy transformation.

Fig. 7. Global progress in optimizing energy smart grids using AI [58,59].
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detection, reducing downtime and operational costs. Energy storage 
optimization, another critical factor for managing renewable energy 
intermittency, improved from 6 % to 28 %, enabled by AI’s ability to 
optimize battery usage and discharge cycles.

The USA, Germany, and China have made the most significant strides 
in optimizing energy smart grids using AI in recent years, as shown in 
Fig. 8. The USA leads with remarkable progress, achieving over 35 % 
optimization by 2023, reflecting its robust investments in AI-driven 
smart grid technologies and renewable energy integration. This 
growth is supported by advancements in energy demand forecasting, 
grid stability improvements, and energy storage optimization, making 
the USA a global leader in advantage AI for energy transformation. 
Germany follows closely with a progress rate of approximately 32 % in 
2023, showcasing its dedication to sustainability through AI-based so
lutions. Its integration of renewables such as solar and wind into smart 
grids, coupled with predictive maintenance technologies, has signifi
cantly enhanced its energy system efficiency.

China exhibits substantial progress, with its optimization rate 
reaching nearly 30 % by 2023. As the world’s largest renewable energy 
producer, China’s integration of AI technologies into its massive energy 
infrastructure has been pivotal in improving efficiency and reducing 
costs. AI tools in China are extensively used for renewable energy 
forecasting, dynamic energy distribution, and fault detection, allowing 
it to overcome challenges associated with managing its expansive en
ergy networks.

6. AI optimize green hydrogen production

The application of deep learning plays a considerable role in the 
optimization of green hydrogen production through the improvement of 
electrolysis processes and lower energy consumption. Electrolysis, the 
process of splitting water into hydrogen and oxygen using electricity 
from renewable sources, is energy-intensive and requires precise control 
to maximize efficiency. AI-driven models analyze large datasets from the 
electrolysis process, identifying patterns and optimizing parameters 
such as temperature, pressure, and energy input in real time [63]. 
Implementing machine learning algorithms, AI can predict system per
formance, reduce inefficiencies, and enhance the overall yield of 
hydrogen. This enables green hydrogen production to become more 
cost-competitive with traditional hydrogen derived from fossil fuels, 
accelerating its adoption as a clean energy alternative [64]. Addition
ally, AI facilitates predictive maintenance of hydrogen production sys
tems, reducing downtime and operational costs. AI-powered sensors 

monitor critical components in real time, detecting anomalies and po
tential failures before they disrupt production [65]. Moreover, AI is used 
to integrate green hydrogen production systems with renewable energy 
sources such as solar and wind. Forecasting renewable energy avail
ability, AI ensures that electrolysis occurs during peak renewable energy 
generation, optimizing resource utilization and reducing reliance on 
grid electricity [66].

The progress in utilizing AI to optimize green hydrogen production 
has been significant with notable advancements. As depicted in Fig. 9, 
electrolyzer efficiency improved notably, starting at 6 % in 2020 and 
reaching 18 % by 2023, driven by AI’s ability to refine operational pa
rameters such as temperature and pressure during the electrolysis pro
cess. Similarly, energy consumption saw reductions from 4 % in 2020 to 
12 % in 2023, highlighting the effectiveness of AI in aligning hydrogen 
production with renewable energy availability and reducing in
efficiencies. Other areas, such as hydrogen production cost reduction 
and renewable energy utilization efficiency, experienced steady prog
ress. Hydrogen production costs decreased significantly, achieving a 
reduction of 14 % by 2023, thanks to AI-enabled predictive maintenance 
and operational optimization. Renewable energy utilization efficiency, 
critical for green hydrogen production, improved from 8 % in 2021 to 
16 % in 2023, showcasing AI’s role in maximizing the use of renewable 
energy such as solar and wind.

As shown in Fig. 10, countries such as the USA, Germany, and China 
lead in progress related to green hydrogen production using AI between 
2020 and 2023. The USA demonstrated the highest advancements, with 
its progress reaching over 35 % in 2023, reflecting substantial in
vestments in AI-driven hydrogen production technologies. The country’s 
focus on optimizing electrolyzer efficiency, reducing production costs, 
and using AI for predictive maintenance has significantly contributed to 
its leadership in the field. Germany, with progress approaching 30 % by 
2023, highlights its strong commitment to sustainability and innovation. 
Germany advancements are driven by AI-powered integration of 
renewable energy with green hydrogen systems, ensuring efficient 
production and resource utilization. China, achieving 28 % progress in 
2023, demonstrates its large-scale application of AI technologies to 
enhance green hydrogen production. With its extensive renewable en
ergy resources, China has leveraged AI for optimizing electrolyzers, 
reducing energy consumption, and aligning production with solar and 
wind availability. Other countries such as Japan, India, and South Korea 
show notable progress, emphasizing their growing adoption of AI tools 
to reduce production inefficiencies and scale deployment.

Fig. 8. Countries with highest progress in optimizing energy smart grids using 
AI [60–62].

Fig. 9. Global progress in using AI to optimize green hydrogen production [67, 
68]. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.)
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7. Opportunities towards sustainability and Net Zero using AI

AI offers transformative opportunities to achieve sustainability and 
Net-Zero goals by optimizing energy production, reducing waste, and 
enhancing resource efficiency. Advantage of AI-driven predictive ana
lytics, renewable energy sources such as solar and wind can be effi
ciently integrated into the grid. For example, AI forecasts energy 
demand and renewable generation with high accuracy, allowing grid 
operators to manage supply-demand imbalances effectively and reduce 
reliance on fossil fuels [72]. Additionally, AI-enabled smart grids opti
mize energy distribution and storage, minimizing energy loss and 
ensuring maximum utilization of renewable resources. These advance
ments significantly contribute to the decarbonization of energy systems 

and support global Net-Zero objectives [73].
The opportunity AI provides is in enhancing energy efficiency across 

industries and urban areas. Smart sensors and AI-powered monitoring 
systems optimize energy use in buildings, factories, and transportation 
networks by identifying inefficiencies and automating energy-saving 
measures [74]. AI facilitates the circular economy by improving waste 
management and recycling processes. For instance, machine learning 
models analyze material flows and predict optimal recycling pathways, 
reducing resource waste and minimizing the environmental footprint 
[75]. Furthermore, AI supports sustainable agriculture practices by 
optimizing water and fertilizer usage, boosting productivity while 
conserving natural resources, thereby aligning with broader sustain
ability goals [76]. AI enables industries and governments to make 
data-driven decisions for sustainability by analyzing environmental data 
and assessing the long-term impacts of policies and investments. For 
instance, AI-based climate models simulate the effects of different 
mitigation strategies, helping policymakers design effective pathways to 
achieve Net-Zero emissions [77]. In addition, AI-powered carbon 
tracking systems provide real-time insights into emissions, enabling 
organizations to identify and address high-emission areas.

Fig. 11 highlights the diverse opportunities AI offers in driving sus
tainability and achieving net-zero goals. AI optimizes renewable energy 
systems by improving forecasting, resource allocation, and grid inte
gration, ensuring efficient use of energy resources. It enhances smart 
grid functionality, balancing supply and demand while reducing energy 
waste. In industrial sectors, AI facilitates decarbonization by improving 
operational efficiency and enabling cleaner energy transitions. Addi
tionally, AI supports the circular economy by optimizing waste man
agement and recycling processes, reducing environmental impacts.

Table 2 highlights the progress made by various countries in 
adopting renewable energy sources as part of the commitments to 
achieving Net-Zero emissions. It reflects the steady increase in renew
able energy consumption over time, showcasing the impact of policy 
initiatives, technological advancements, and global collaboration. The 
trends provide insights into countries progressing toward the sustain
ability goals while transitioning to cleaner energy systems.

Fig. 10. Countries with highest progress in green hydrogen production using AI 
[69–71]. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.)

Fig. 11. Opportunities toward sustainability and Net Zero using AI.

S. Algburi et al.                                                                                                                                                                                                                                  Unconventional Resources 8 (2025) 100229 

9 



Fig. 12 outlines a roadmap detailing the stages required to leverage 
AI for achieving environmental sustainability and net-zero goals. The 
process begins with the Foundation Phase, which emphasizes building 
infrastructure and raising awareness. Developing robust data infra
structure and fostering global collaboration are essential components of 
this phase, as they provide the necessary groundwork for AI-driven so
lutions. Raising awareness among policymakers, industries, and the 
public ensures a collective understanding of AI’s potential in sustain
ability efforts. The phases focus on research, implementation, and 
optimization. The Research and Development Phase drives innovation 
by advancing AI algorithms, targeting key applications, and encour
aging interdisciplinary collaboration. This leads to the Implementation 
Phase, where AI is integrated into renewable energy systems, smart 
cities, and carbon management processes. Deploying AI at this stage 
enables industries and governments to transition to efficient and low- 
emission systems. Following implementation, the Monitoring and 
Optimization Phase ensures effectiveness through real-time monitoring 
and resilience-building strategies, addressing potential bottlenecks in 
achieving sustainability targets. The Social and Economic Phase em
phasizes skill development, ethical AI practices, and support for green 
financing, ensuring equitable access to AI-driven solutions. The Scaling 
Phase focuses on achieving global impact by harmonizing regulations 

and expanding deployment across regions.

8. Real-world effects of AI on renewable energy

AI has had profound real-world effects on renewable energy, revo
lutionizing its production, integration, and management. One key 
impact is the enhancement of energy forecasting accuracy, which en
ables renewable systems such as wind and solar to predict weather 
patterns and energy output with greater precision. Analyzing vast 
amounts of meteorological and historical data, AI algorithms ensure that 
energy supply aligns with demand, reducing waste and improving effi
ciency. This has helped grid operators integrate intermittent renewable 
sources into the energy mix without compromising stability. Addition
ally, AI-powered predictive maintenance systems monitor equipment 
such as wind turbines and solar panels, identifying potential failures 
before they occur. This reduces downtime and operational costs while 
extending the lifespan of renewable energy assets, ensuring more 
consistent energy production. A significant real-world effect of AI is its 
role in optimizing energy storage and distribution. AI-driven energy 
storage systems predict energy demand trends and manage battery 
charge-discharge cycles efficiently, addressing the intermittency of re
newables such as solar and wind. This ensures a reliable power supply 
during periods of low energy generation. Moreover, smart grids powered 
by AI dynamically balance supply and demand by redistributing energy 
in real-time, reducing grid stress and preventing outages. AI facilitates 
the integration of decentralized systems such as microgrids, enabling 
localized energy production and consumption.

Table 3 highlights the steady advancements in AI applications within 
the renewable energy sector over time, showcasing improvements 
across various critical categories. AI has been instrumental in optimizing 
energy production, enhancing energy storage and grid stability, and 
facilitating the integration of renewable energy sources into existing 
systems. It underscores the growing economic and environmental ben
efits driven by AI, as well as its contributions to addressing social and 
ethical impacts.

Table 2 
Net-Zero targets and renewable energy consumption trends by country [78,79].

Country Net-Zero target year Renewable energy consumption (%)

2020 2021 2022 2023

USA 2050 20 22 25 28
Germany 2045 40 42 45 48
China 2060 15 18 20 22
India 2070 22 24 26 28
Japan 2050 18 20 22 25
UK 2050 35 37 40 42
France 2050 33 35 37 40
Australia 2050 25 27 30 32
Canada 2050 30 32 35 38
UAE 2050 12 14 16 18

Fig. 12. Roadmap for the role of renewable energy and AI to achieve environmental sustainability and Net Zero.
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9. Success stories and case studies

The success projects summarized in this section highlight the trans
formative impact of AI on renewable energy systems, showcasing its 
ability to drive efficiency, reliability, and sustainability on a global scale. 
Across various regions, AI has proven to be a critical enabler in over
coming traditional challenges associated with renewable energy, such as 
intermittency, high costs, and integration into existing grids. 

• Google’s data centre energy optimization (USA)

Google utilized machine learning to optimize energy consumption in 
its data centers, achieving a remarkable 40 % reduction in cooling sys
tem energy usage [83]. AI-driven models monitored energy usage pat
terns and made real-time adjustments to improve efficiency. This case 
study highlights the importance of continuous data collection and 
analysis to optimize energy-intensive operations in large-scale infra
structure. Moreover, it underscores how AI can reduce operational costs 
while supporting environmental sustainability. 

• DeepMind’s wind power forecasting (USA)

The project implemented advanced AI techniques to forecast wind 
power generation more accurately, improving predictability by 20 % 
[84]. The AI model analyzed historical weather data and wind patterns, 
enabling better alignment of energy generation with demand. This 
improvement reduced the unpredictability of wind energy, making it a 
more reliable source for grid operators. The case highlights the impor
tance of forecasting tools in mitigating the intermittency of renewables. 
It demonstrates the potential of AI to support renewable energy sched
uling, ensuring that wind power can be seamlessly integrated into the 
grid while reducing reliance on fossil fuels. 

• TenneT’s smart grid management (Germany/Netherlands)

The project employed AI for managing grid stability, successfully 
preventing overloads by optimizing energy flow across interconnected 
systems [85]. The AI-based system monitored grid conditions in 
real-time, dynamically redistributing energy to avoid imbalances and 
disruptions. This case underscores the importance of real-time coordi
nation between grid operators and AI systems to ensure stable and 
reliable power distribution. It demonstrates AI’s potential to enhance 
grid resilience, particularly as the share of intermittent renewable en
ergy sources increases. 

• Iberdrola’s renewable energy optimization (Spain)

Iberdrola used AI to optimize wind turbine maintenance and per
formance, increasing operational efficiency by 25 % [86]. The AI system 
identified early signs of wear and tear, enabling predictive maintenance 
and reducing downtime. This proactive approach not only improved 
energy production but reduced costs associated with unplanned repairs. 
The case highlights how AI can enhance asset reliability and maximize 
renewable energy output. It serves as a model for other energy producers 

looking to optimize operations and reduce inefficiencies through 
advanced monitoring and data-driven decision-making, reinforcing the 
value of AI in renewable energy systems. 

• Pinggao Group’s smart energy dispatch (China)

The Pinggao Group applied reinforcement learning to optimize en
ergy dispatch, effectively balancing variable renewable sources and 
enhancing grid efficiency [87]. AI systems analyzed energy demand and 
generation patterns, making adjustments in real-time to stabilize the 
grid. This application demonstrated AI’s ability to integrate diverse 
renewable sources, such as solar and wind, into existing energy in
frastructures. Leveraging AI for smart energy dispatch, the Pinggao 
Group reduced energy losses and improved overall system reliability. 
This case emphasizes how AI can support the seamless incorporation of 
renewables into grids, accelerating the global shift toward sustainable 
energy solutions. 

• Australian energy market operator (Australia)

Project used AI to predict solar energy demand and supply, achieving 
a reduction in energy waste by aligning production with demand [88]. 
The AI model provided accurate forecasts of energy generation, ensuring 
that surplus energy was efficiently stored or redirected. This reduced the 
risks associated with solar energy intermittency, improving overall 
system reliability. The case highlights the value of AI in optimizing 
renewable energy operations, particularly in regions with high solar 
penetration. 

• Engie’s AI-Powered solar farms (France)

Project implemented AI systems to monitor and detect faults in solar 
farm equipment, achieving 98 % accuracy in anomaly detection [89]. 
Identifying equipment failures early, the system reduced maintenance 
costs and downtime, ensuring continuous energy production. This case 
demonstrates the transformative potential of AI in improving the reli
ability and efficiency of solar energy assets. AI-driven asset monitoring 
enhances decision-making, allowing operators to allocate resources 
more effectively. Engie’s success serves as a model for solar energy op
erators seeking to optimize operations and maximize returns on their 
renewable energy investments through AI integration. 

• RENAI project by SoftBank (India)

Project employed AI to forecast solar and wind energy generation, 
improving prediction accuracy by 30 % [90]. The AI model leveraged 
data from multiple renewable sources to provide real-time insights into 
energy availability, enabling better resource planning and grid inte
gration. This case highlights the importance of accurate forecasting in 
hybrid renewable systems, ensuring that energy supply meets demand 
efficiently. Demonstrating the benefits of AI-driven energy prediction, 
the RENAI Project provides a blueprint for effectively managing hybrid 
systems and optimizing renewable energy deployment in regions with 
diverse energy sources. 

• KEPCO’s AI for grid optimization (South Korea)

KEPCO utilized AI for dynamic energy distribution, improving grid 
reliability by 35 % [91]. The AI system adjusted energy flow in 
real-time, ensuring that power supply met fluctuating demands in 
densely populated areas. This case underscores the importance of AI in 
enhancing grid flexibility and reliability, particularly in urban regions 
with high energy consumption. KEPCO’s approach illustrates how 
AI-driven solutions can address the challenges of managing complex 
energy grids, supporting the integration of renewables while maintain
ing stable operations. It serves as an example for other countries looking 

Table 3 
AI progress in renewable energy across key categories [80–82].

Category AI progress in renewable energy (%)

2020 2021 2022 2023

Social and ethical impacts 5 12 20 30
Environmental Impact 4 9 15 22
Cost reduction and economic benefits 6 13 20 28
Integration of renewable energy sources 7 15 25 35
Energy storage and grid stability 8 18 28 40
Optimization of energy production 10 20 30 45
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to modernize their energy distribution systems. 

• Masdar City renewable system (UAE)

Masdar City employed AI to manage energy consumption in its smart 
city infrastructure, achieving a 50 % reduction in energy usage [92]. AI 
systems optimized energy distribution across residential, commercial, 
and industrial sectors, ensuring maximum efficiency. This case demon
strates the role of AI in creating sustainable urban environments by 
minimizing energy waste and promoting renewable energy adoption.

10. Pathways and future outlook

10.1. Future projections for ai in renewable energy

AI is poised to revolutionize renewable energy systems even further 
in the coming years, with enhanced energy forecasting being one of the 
most transformative advancements. Current AI models already demon
strate significant accuracy in predicting energy output from renewable 
sources, but future projections estimate forecasting accuracies 
exceeding 95 % by 2030 [93]. This level of precision enables grid op
erators to predict solar and wind energy output with near-perfect ac
curacy, ensuring better alignment of energy supply with demand. For 
instance, in countries such as Germany, where renewable energy 
penetration exceeds 40 %, such accuracy minimizes energy waste and 
reduce grid instability. Enhanced forecasting plays a pivotal role in re
gions such as India and China, where variable renewable energy sources 
are rapidly scaling up. These improvements drastically reduce curtail
ment rates and enhance the reliability of renewable energy systems 
globally [94]. Another significant projection involves the development 
of fully automated AI-driven grids by 2030. These grids utilize AI to 
manage energy flow dynamically, making real-time adjustments 
without human intervention [95]. In countries such as the USA and 
Australia, where smart grid adoption is accelerating, AI is expected to 
enable seamless integration of distributed energy resources, such as 
rooftop solar and community wind farms. By autonomously balancing 
supply and demand, these grids optimize energy flow, prevent over
loads, and reduce operational inefficiencies. For example, it is projected 
that fully autonomous grids reduce transmission losses by up to 20 % 
globally. This advancement particularly benefits countries with large, 
complex energy networks, such as China, ensuring efficient energy 
distribution even as renewable energy capacity expands [96].

The integration of AI into renewable energy systems drive significant 
cost reductions, making renewable energy highly competitive with fossil 
fuels. By 2030, AI is projected to reduce the cost of renewable energy 
production by 15–20 %, depending on the energy source and region 
[97]. This cost reduction be achieved through optimized resource allo
cation, predictive maintenance, and enhanced system efficiencies. For 
example, in South Korea, where AI is already used for grid optimization, 
future advancements reduce operational costs, further accelerating the 
adoption of renewables. Similarly, in Africa, where renewable energy 
infrastructure is still developing, AI can help lower initial deployment 
costs, enabling access to affordable clean energy for underserved com
munities. These cost reductions drive global investments in renewables, 
potentially increasing the share of renewable energy in the global energy 
mix from the current 30 % to over 50 % by 2030 [98]. AI’s role in 
renewable energy extends beyond technological advancements to foster 
global energy equity and sustainability. Enhanced energy forecasting 
and autonomous grids enable developing countries, such as those in 
Southeast Asia and Africa, to deploy renewable energy systems more 
efficiently, bridging the energy access gap. AI-powered solutions ensure 
optimal resource utilization, minimizing the carbon footprint of 
renewable energy projects. Countries such as the UAE, which have 
already achieved notable milestones in AI-driven smart city initiatives, 
such as serve as models for integrating AI into urban energy systems 
[99].

10.2. Renewable energy role in energy transition

Renewable energy plays a pivotal role in global energy transition 
efforts, particularly in meeting ambitious carbon neutrality goals. By 
2050, renewables are projected to account for over 70 % of global en
ergy production, with solar and wind energy driving this transformation 
[100]. Countries such as Germany and Spain, which already have 
renewable shares of over 40 % in their energy mix, serve as prime ex
amples of how renewables can rapidly scale up. In the USA, renewable 
energy consumption increased to 28 % in 2023, reflecting a steady shift 
from fossil fuels. Solar energy, in particular, is expected to dominate 
future growth due to its cost competitiveness and scalability, while wind 
energy remains a key contributor, especially in regions with abundant 
wind resources such as China and the UK. The widespread adoption of 
renewables not only reduce global greenhouse gas emissions but 
enhance energy security by diversifying energy supply sources [101]. 
The rise of the hydrogen economy represents another transformative 
development, with green hydrogen production becoming a cornerstone 
of energy transition strategies. Green hydrogen, produced through 
electrolysis powered by renewable energy, offers a sustainable solution 
for hard-to-decarbonize sectors such as heavy industry, shipping, and 
aviation [102]. Countries such as Australia and Saudi Arabia are 
investing heavily in green hydrogen projects, aiming to become global 
leaders in its production and export. For example, Australia’s Hydrogen 
Energy Supply Chain project is expected to produce thousands of tons of 
green hydrogen annually, leveraging the country’s vast solar and wind 
resources. By 2050, green hydrogen could account for up to 20 % of 
global energy demand, reducing emissions in sectors that contribute 
significantly to global warming [103].

Energy storage technologies play a critical role in enabling stable, 
round-the-clock energy availability, a necessity for achieving energy 
transition targets. Batteries paired with renewable energy systems, such 
as lithium-ion and solid-state batteries, have already made significant 
progress in addressing the intermittency of solar and wind energy. By 
2030, energy storage capacity is projected to increase by over 300 %, 
ensuring reliable power supply even during periods of low renewable 
energy generation [104]. Countries such as the USA and South Korea are 
at the forefront of energy storage innovation, with large-scale battery 
installations supporting grid stability. Meanwhile, emerging economies, 
such as India, are adopting energy storage solutions to complement their 
rapidly expanding renewable energy infrastructure. These advance
ments ensure that renewable energy systems can meet the growing en
ergy demands of a decarbonized global economy. In addition to 
technological advancements, renewable energy’s role in the energy 
transition extends to fostering global collaboration and equitable access. 
Regions such as Africa and Southeast Asia are leveraging international 
partnerships to deploy renewable energy systems, addressing energy 
access disparities while reducing dependence on fossil fuels. Countries 
such as Kenya, which has achieved over 90 % renewable energy gen
eration, highlight the potential for renewables to transform energy 
systems in developing regions [105]. Moreover, initiatives such as the 
European Green Deal demonstrate how renewables can drive compre
hensive policy frameworks that align environmental, economic, and 
social goals.

11. Conclusions

The transition from fossil fuels to renewable energy is crucial for 
addressing global environmental challenges, including climate change, 
resource depletion, and energy inequity. Renewable energy sources, 
characterized by their natural replenishment and minimal greenhouse 
gas emissions, offer viable alternatives to fossil fuels. Despite their po
tential, several obstacles such as intermittency, high initial costs, and 
integration challenges with existing infrastructure hinder widespread 
adoption. The AI technologies provide transformative solutions by 
optimizing energy systems and enhancing their efficiency. This study 
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investigated the synergies between renewable energy and AI, exploring 
their combined potential to foster a sustainable, resilient, and secure 
global energy future.

The key inferences from this study are summarized below: 

1. Renewable energy sources (solar, wind, geothermal, hydropow
er) face significant challenges due to inherent variability, 
impacting grid stability and continuous power supply.

2. AI technologies effectively address renewable energy intermit
tency by providing accurate predictive analytics based on his
torical and real-time environmental data, thus ensuring balanced 
energy supply and demand.

3. AI significantly enhances energy storage systems by optimizing 
battery performance and extending lifecycle efficiency, ensuring 
consistent renewable energy availability.

4. The adoption of AI-driven smart grids promotes decentralized 
energy distribution, empowering consumers as "prosumers," 
capable of generating, storing, and sharing energy efficiently.

5. Economically and technologically, AI integration in renewable 
energy leads to substantial cost savings, reduced operational ex
penses, and maximized renewable resource utilization.

6. AI fosters innovation in energy technology, facilitating advances 
in photovoltaic materials, high-capacity energy storage, and 
efficient maintenance processes through predictive analytics.

7. Innovative business models enabled by AI, including demand- 
response programs and peer-to-peer energy trading, create 
more equitable and sustainable energy markets.

8. The successful deployment of AI-powered renewable energy 
systems requires robust policy frameworks, interdisciplinary 
collaboration, and effective public-private partnerships.

9. Governments should prioritize research and development in
vestments, incentivize renewable energy adoption, and establish 
clear regulations guiding AI applications in energy systems.

10. Private sector engagement is vital in driving innovation, tech
nology transfer, and ensuring the affordability and accessibility 
of AI-driven renewable energy solutions.

11. Comprehensive education and workforce development initiatives 
are essential to cultivate skilled human capital capable of sup
porting and advancing the integration of AI in renewable energy 
systems.
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synergy between photovoltaic panels and hydrogen fuel cells for green power
supply of a green building—a case study, Sustainability 13 (11) (2021) 6304.

[13] A.K. Rohit, S. Rangnekar, An overview of energy storage and its importance in
Indian renewable energy sector: Part II–energy storage applications, benefits, and 
market potential, J. Energy Storage 13 (2017) 447–456.

[14] A. Rashid, P. Biswas, A. Biswas, M.D. Nasim, K.D. Gupta, R. George, Present and
future of AI in renewable energy domain: a comprehensive survey, arXiv preprint 
arXiv:2406.16965 (2024).

[15] A.F. Abdelfattah, Sustainable development practices and its effect on green
buildings, in: IOP Conference Series: Earth and Environmental Science 410, IOP 
Publishing, 2020 012065, 1.

[16] R.F. Green, E.J. Joy, F. Harris, I. Ibragimov, L. Aleksandrowicz, J. Hillier, A.
D. Dangour, Greenhouse gas emissions and water footprints of typical dietary
patterns in India, Sci. Total Environ. 643 (2018) 1411–1418.

[17] L. Drouet, V. Bosetti, S.A. Padoan, L. Aleluia Reis, C. Bertram, F. Dalla Longa,
M. Tavoni, Net zero-emission pathways reduce the physical and economic risks of
climate change, Nat. Clim. Change 11 (12) (2021) 1070–1076.

[18] K. Akimoto, F. Sano, J. Oda, H. Kanaboshi, Y. Nakano, Climate change mitigation
measures for global net-zero emissions and the roles of CO2 capture and 
utilization and direct air capture, Energy Clim. Change 2 (2021) 100057.

[19] M.F. Jaumotte, W. Liu, W.J. McKibbin, Mitigating Climate Change: Growth-
Friendly Policies to Achieve Net Zero Emissions by 2050 (No. 16553), 
International Monetary Fund, 2021.

[20] C. Bataille, L.J. Nilsson, F. Jotzo, Industry in a net-zero emissions world: new
mitigation pathways, new supply chains, modelling needs and policy 
implications, Energy Clim. Change 2 (2021) 100059.

[21] K.H. Nguyen, M. Kakinaka, Renewable energy consumption, carbon emissions,
and development stages: some evidence from panel cointegration analysis,
Renew. Energy 132 (2019) 1049–1057.

[22] International Energy Agency (IEA), Renewable energy report 2021, Retrieved
from, https://www.iea.org/reports/renewables-2021, 2021.

[23] H.L. Van Soest, M.G. den Elzen, D.P. van Vuuren, Net-zero emission targets for
major emitting countries consistent with the Paris Agreement, Nat. Commun. 12 
(1) (2021) 2140.

[24] I. Dafnomilis, M. den Elzen, D.P. van Vuuren, Achieving net-zero emissions
targets: an analysis of long-term scenarios using an integrated assessment model, 
Ann. N. Y. Acad. Sci. (2023).

[25] M.S. Black, I. Parry, M.J. Roaf, K. Zhunussova, Not yet on Track to Net Zero: the
Urgent Need for Greater Ambition and Policy Action to achieve Paris temperature 
Goals, International Monetary Fund, 2021.

[26] H.A. van der Loos, S.O. Negro, M.P. Hekkert, Low-carbon lock-in? Exploring
transformative innovation policy and offshore wind energy pathways in The 
Netherlands, Energy Res. Social Sci. 69 (2020) 101640.

[27] A. Van der Loos, H.E. Normann, J. Hanson, M.P. Hekkert, The co-evolution of
innovation systems and context: offshore wind in Norway and The Netherlands, 
Renew. Sustain. Energy Rev. 138 (2021) 110513.

[28] X. Yang, Y. Zhang, A comprehensive review on electric vehicles integrated in
virtual power plants, Sustain. Energy Technol. Assessments 48 (2021) 101678.

[29] R. Hledik, A. Ramakrishnan, K. Peters, R. Nelson, X. Bartone, Xcel Energy
Colorado Demand Response Study: Opportunities in 2030, 2022.

[30] S. Pye, O. Broad, C. Bataille, P. Brockway, H.E. Daly, R. Freeman, J. Watson,
Modelling net-zero emissions energy systems requires a change in approach,
Clim. Policy 21 (2) (2021) 222–231.

[31] K.R. Abbasi, M. Shahbaz, J. Zhang, M. Irfan, R. Alvarado, Analyze the
environmental sustainability factors of China: the role of fossil fuel energy and
renewable energy, Renew. Energy 187 (2022) 390–402.

[32] L.C. Voumik, M.A. Islam, S. Ray, N.Y. Mohamed Yusop, A.R. Ridzuan, CO2
emissions from renewable and non-renewable electricity generation sources in 
the G7 countries: static and dynamic panel assessment, Energies 16 (3) (2023)
1044.

http://refhub.elsevier.com/S2666-5190(25)00095-0/sref1
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref1
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref2
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref2
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref3
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref3
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref4
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref4
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref4
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref5
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref5
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref5
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref6
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref6
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref6
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref7
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref7
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref7
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref8
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref8
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref8
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref9
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref9
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref9
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref10
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref10
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref10
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref11
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref11
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref11
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref11
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref12
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref12
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref12
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref13
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref13
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref13
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref14
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref14
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref14
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref15
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref15
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref15
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref16
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref16
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref16
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref17
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref17
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref17
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref18
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref18
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref18
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref19
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref19
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref19
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref20
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref20
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref20
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref21
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref21
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref21
https://www.iea.org/reports/renewables-2021
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref23
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref23
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref23
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref24
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref24
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref24
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref25
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref25
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref25
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref26
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref26
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref26
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref27
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref27
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref27
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref28
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref28
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref29
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref29
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref30
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref30
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref30
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref31
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref31
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref31
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref32
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref32
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref32
http://refhub.elsevier.com/S2666-5190(25)00095-0/sref32


[61] M. SaberiKamarposhti, H. Kamyab, S. Krishnan, M. Yusuf, S. Rezania, 
S. Chelliapan, M. Khorami, A comprehensive review of AI-enhanced smart grid 
integration for hydrogen energy: advances, challenges, and future prospects, Int. 
J. Hydrogen Energy (2024).

[62] T.M. Olatunde, A.C. Okwandu, D.O. Akande, Z.Q. Sikhakhane, The impact of 
smart grids on energy efficiency: a comprehensive review, Eng. Sci.Technol. J. 5 
(4) (2024) 1257–1269.

[63] A. Al-Othman, M. Tawalbeh, R. Martis, S. Dhou, M. Orhan, M. Qasim, A.G. Olabi, 
Artificial intelligence and numerical models in hybrid renewable energy systems 
with fuel cells: advances and prospects, Energy Convers. Manag. 253 (2022) 
115154.

[64] T. Khan, M. Yu, M. Waseem, Review on recent optimization strategies for hybrid 
renewable energy system with hydrogen technologies: state of the art, trends and 
future directions, Int. J. Hydrogen Energy 47 (60) (2022) 25155–25201.

[65] K.E. Bassey, C. Ibegbulam, Machine learning for green hydrogen production, 
Comput. Sci. IT Res. J. 4 (3) (2023) 368–385.

[66] S.O. Jeje, T. Marazani, J.O. Obiko, M.B. Shongwe, Advancing the hydrogen 
production economy: a comprehensive review of technologies, sustainability, and 
future prospects, Int. J. Hydrogen Energy 78 (2024) 642–661.

[67] European sustainable energy, available at: https://sustainable-energy-week.ec. 
europa.eu/index_en.

[68] J.A. Riera, R.M. Lima, O.M. Knio, A review of hydrogen production and supply 
chain modeling and optimization, Int. J. Hydrogen Energy 48 (37) (2023) 
13731–13755.

[69] A. Islam, T. Islam, H. Mahmud, O. Raihan, M.S. Islam, H.M. Marwani, M. 
R. Awual, Accelerating the green hydrogen revolution: a comprehensive analysis 
of technological advancements and policy interventions, Int. J. Hydrogen Energy 
67 (2024) 458–486.

[70] S. Yüksel, H. Dinçer, M. Acar, E. Ergün, S. Eti, Y. Gökalp, Financial 
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