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This study introduces an integrated predictive modeling framework for assessing building energy consumption
and indoor thermal comfort, with a focus on supporting decarbonization efforts in both new construction and
retrofit scenarios. A total of 21 critical design and operational parameters were evaluated using Monte Carlo
simulations combined with EnergyPlus, enabling high-resolution analysis of cooling loads, thermal comfort
performance, and retrofit outcomes. The proposed multi-variable regression model demonstrated strong pre-
dictive accuracy, achieving an R? of 0.98, a mean absolute percentage error of 1.59 %, and a Coefficient of
Variation of the Root Mean Square Error (CVRMSE) of 1.47 % in forecasting annual cooling demands. Optimi-
zation of variables such as indoor temperature set-point, solar heat gain coefficient, and glazing U-values yielded
energy savings of up to 70 kWh/m? annually, corresponding to a potential carbon emission reduction of 31.5 kg
CO2/m?/year, based on a regional electricity emission factor of 0.45 kg CO2/kWh. The environmental quality
thermal comfort index developed within this framework effectively quantified comfort conditions across varying
scenarios, with values improving from 50 to 100 under optimized configurations. The model also revealed
pronounced spatial variability, with perimeter zones reaching peak cooling loads of up to 198 W/m?, empha-
sizing the need for zone-specific design strategies.

as a vital mechanism for aligning industry practices with global energy
reduction goals. Particular emphasis is placed on architectural design
elements and socio-economic factors to support the holistic develop-
ment of energy-efficient buildings [4]. This integrated approach ex-
pands the scope of energy efficiency benefits to encompass social equity

1. Introduction

A compelling impetus exists to adopt sustainable practices in con-

struction and retrofitting, as highlighted by global climate initiatives
such as the Net Zero Emission Pathway, which sets ambitious carbon
reduction targets [1]. Achieving these targets necessitates advanced
strategies in predictive energy modeling and enhanced design standards
to minimize the environmental impact of both new and existing build-
ings [2,3]. Beyond compliance with tightening energy regulations, these
strategies promote the integration of innovative technologies within the
built environment. Elevating energy efficiency in building design serves

* Corresponding authors.

and economic viability, enabling the implementation of technically
grounded designs that address diverse community needs [5]. Such a
framework contributes to sustainable development objectives and en-
hances urban resilience.

Within this global context, the pursuit of net-zero carbon buildings in
Iraq reflects a national commitment to addressing climate change and
modernizing the building sector. Central to this initiative is the
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Abbreviations and Nomenclature

ANN Artificial Neural Network

ASHRAE American Society of Heating, Refrigerating and Air-
Conditioning Engineers

BIC Bayesian Information Criterion

CDD Cooling Degree Days

CFD Computational Fluid Dynamics

CDH Cooling Degree Hours

CVRMSE Coefficient of Variation of the Root Mean Square Error

EQTC Environmental Quality Thermal Comfort

GSR Global Solar Radiation

HVAC  Heating, Ventilation, and Air Conditioning

IDF Input Data File

kWh/m? Kilowatt-hours per square meter

MAPE  Mean Absolute Percentage Error
MLR Multi-Linear Regression

MRT Mean Radiant Temperature
OFAT One-Factor-at-a-Time

PMV Predicted Mean Vote

PPDI Predicted Percentage of Dissatisfied Index
R? Coefficient of Determination

SHGC  Solar Heat Gain Coefficient

SRC Standardized Regression Coefficient

T™MY Typical Meteorological Year
UBEM  Urban Building Energy Model
U-value Thermal Transmittance (W/m?K)
WE Weighted Exceedance Hours
WAP Weighted Average Prediction
Wh/m?> Watt-hours per square meter

enhancement of energy performance in the existing building stock,
which typically exhibits inefficiency and elevated carbon emissions [6,
7]. Retrofitting efforts involve deploying low-energy technologies and
incorporating advanced materials and design practices. In new con-
structions, emphasis is placed on precise energy-use prediction through
simulation tools such as EnergyPlus and e-QUEST, which enable per-
formance optimization during the design phase [8]. Regulatory ad-
vancements further mandate high-efficiency standards across both
existing and new buildings, driving adoption of modern technologies
that reduce overall energy consumption [9].

1.1. Literature review

The imperative to decarbonize the building environment has drawn
significant attention due to the pressing need to address climate change
and enhance sustainability across both construction and retrofitting
sectors. Within this framework, predictive modeling of building energy
consumption and thermal comfort has become a central area of inves-
tigation. Increasingly, research efforts aim to integrate advanced tech-
nologies with empirical data to improve the precision of predictions,
thereby informing strategies that facilitate the transition toward net-
zero carbon buildings. Deb and Schlueter [10] conducted a compre-
hensive review of data-driven modeling techniques applied to building
retrofit scenarios, demonstrating the efficiency of various statistical and
machine learning methods in forecasting and optimizing energy per-
formance post-intervention. Albatayneh et al. [11] examined the critical
influence of thermal comfort models on energy consumption prediction,
underscoring their importance in sustainable building design. The
findings, published in Sustainability, highlight the extent to which
divergent thermal comfort models can yield substantially different en-
ergy predictions, directly impacting decisions related to construction
and retrofit planning. A key outcome of the study emphasizes the ne-
cessity for standardization in the application of thermal comfort
frameworks to enhance the reliability of energy prediction models.

In the pursuit of practical decision-making tools, Saad et al. [12]
explored surrogate modeling techniques with a focus on multi-criteria
analysis to support retrofitting strategies within decarbonization ef-
forts. These models simplify complex decision-making processes by
providing quantitative estimates of cost-benefit relationships among
retrofitting alternatives, offering substantial value to policymakers and
developers seeking to balance environmental and economic priorities.
Arowoiya et al. [13] investigated the integration of digital twin tech-
nology for improving both energy efficiency and thermal comfort in
buildings. The study presented a state-of-the-art digital solution capable
of producing dynamic, predictive performance models, illustrating the
direction of future innovations in the field. Results indicate that digital
twins represent a transformative advancement in predictive modeling

by enabling real-time simulation and monitoring, which can signifi-
cantly enhance both design and operational outcomes. Alghamdi et al.
[14] developed a computational model that combines Monte Carlo
simulation, EnergyPlus, and Artificial Neural Networks (ANN) to opti-
mize predictions of energy consumption and thermal comfort. The
model demonstrated strong performance, with R? values exceeding 0.97
for both energy consumption and thermal discomfort metrics during
training and testing phases. Field validation further confirmed its reli-
ability, with mean relative errors of <2.0 % for total energy use and
below 1.0 % for average thermal discomfort hours. These findings
collectively underscore the rapid evolution of predictive tools in build-
ing energy research and highlight the importance of integrating comfort
and performance metrics into unified, high-accuracy models.

Energy performance and indoor thermal comfort in residential
buildings, evaluated at both neighborhood and city scales, constitute
foundational elements of urban design and planning. These factors exert
substantial influence on environmental sustainability and the overall
quality of life for urban populations. Energy performance encompasses
the efficient application of energy resources to satisfy essential building
functions such as heating, cooling, and lighting, while minimizing en-
ergy consumption and maintaining comfort standards. Indoor thermal
comfort, by contrast, is determined by a building’s internal environ-
mental conditions, including air temperature, humidity, and airflow.
These parameters must align with physiological and psychological
thresholds to ensure occupant well-being. Braulio-Gonzalo et al. [15]
introduced a methodology designed to predict energy performance and
indoor thermal comfort across extensive residential building stocks at
urban scales. A case study conducted in Spain demonstrated the inte-
gration of historical energy consumption data with simulation tools for
assessing and enhancing energy efficiency. The resulting methodology
offered urban planners a scalable framework aligned with long-term
sustainability goals for residential districts. Santamouris et al. [16]
examined current and future challenges related to building energy
consumption, emphasizing the urgency of decarbonization. The study
identified key drivers of energy demand and presented a comparative
analysis of decarbonization strategies, weighing their benefits and
trade-offs.

Gabrielli and Ruggeri [17] developed an innovative model aimed at
simplifying the retrofitting process for large building portfolios. The
proposed model incorporated energy assessment tools and optimization
algorithms to formulate effective retrofitting strategies. An uncertainty
analysis component was included to evaluate the robustness of the
model against unpredictable variables affecting energy performance.
Rabani et al. [18] designed an integrated optimization framework that
combined building energy simulation with computational fluid dy-
namics and daylight analysis. This multi-faceted approach enabled
optimization of building envelope design, fenestration configuration,
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and HVAC system parameters, resulting in substantial energy savings
and enhanced occupant comfort. Two retrofit scenarios were applied to
a generic office building located in Oslo, Norway, yielding reductions in
total energy consumption by 77 % and 79 %, respectively, along with
significant improvements in both thermal and visual comfort metrics.
Jafarpur and Berardi [19] investigated the effects of climate change on
energy consumption and thermal comfort in office buildings situated
within Canada’s diverse climatic zones, including extremely cold,
cold-humid, and cool-humid regions. The study revealed region-specific
variations in projected temperature increases and their impact on
building energy use. While heating demands were expected to decline,
corresponding increases in cooling requirements were observed. Ad-
justments to thermostat setpoints demonstrated potential reductions in
annual energy consumption, ranging from 0.9 % to 8.7 % in Quebec
City, 1.6 % to 9.1 % in Toronto, and 1.4 % to 9.9 % in Vancouver. These
findings underscore the importance of climate-responsive building
design and retrofitting strategies in mitigating future energy burdens
across varying geographic contexts.

Building envelope retrofitting involves modifications to the external
components of a structure including walls, roofs, windows, and doors
with the objective of enhancing energy efficiency and improving indoor
comfort. Such interventions can yield substantial energy savings by
reducing the operational demands placed on heating and cooling sys-
tems, thereby lowering overall energy consumption and associated
costs. Martin-Consuegra et al. [20] present a comprehensive study
focused on energy savings and thermal comfort improvements achieved
through envelope retrofitting. The methodology integrates detailed data
monitoring, occupant feedback through surveys, and simulation-based
energy assessments to evaluate retrofit effectiveness. A key aspect of
the study is the comparison between energy savings projected by stan-
dardized energy certificates and the actual post-retrofit consumption
data. Findings reveal notable discrepancies: while heating savings were
less than anticipated approximately a 25 % reduction cooling energy
consumption was reduced by up to 50 %, exceeding expectations. Araijo
et al. [21] address the challenge of stakeholder involvement in the ret-
rofitting process, particularly in the context of Evora, Portugal, where
procedures have often been perceived as rigid and bureaucratic. The
study introduces a user-friendly, open-source interface designed to
support informed decision-making throughout the retrofit lifecycle. The
predictive model developed demonstrates high accuracy, with co-
efficients of determination reaching 0.84 and 0.79 for energy prediction
metrics, highlighting significant potential for both energy reduction and
financial return.

Mui et al. [22] contribute a hybrid simulation model tailored to es-
timate residential cooling energy demands specific to Hong Kong’s cli-
matic and architectural conditions. The model integrates multiple
simulation methodologies to enhance precision, offering valuable in-
sights for urban planners and engineers seeking to refine cooling stra-
tegies in dense, high-rise residential environments. Walker et al. [23]
investigate the influence of contextual variables on retrofit
decision-making across different European regions. The study empha-
sizes that the effectiveness of retrofitting strategies is highly dependent
on regional climatic patterns, building typologies, and the regulatory
landscape. Findings provide actionable guidance for customizing retrofit
plans to regional circumstances, thereby increasing their potential for
decarbonization impact. Aruta et al. [24] examine the application of
advanced computational approaches—including genetic algorithms
(GA) and ANN in model predictive control for heating systems in nearly
zero-energy buildings. The methodology utilizes EnergyPlus weather
datasets to simulate thermal behavior across economically varied winter
conditions. Simulation results indicate that the optimized predictive
control strategy achieved up to 26 % energy savings on the coldest, most
energy-intensive day, February 28, compared to conventional fixed
setpoint controls. These outcomes confirm the effectiveness of intelli-
gent control algorithms in maintaining occupant comfort while
advancing sustainable energy management practices in the building
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sector.

Minimizing energy consumption and decarbonizing building opera-
tions constitute essential strategies for reducing the environmental
impact of the built environment and combating climate change. Effec-
tive implementation requires integration of energy-efficient technolo-
gies and advanced design measures such as enhanced insulation, high-
performance heating and cooling systems, and intelligent control
mechanisms that manage real-time energy use. Shi et al. [25] assessed
the decarbonization potential of China’s building sector using the China
TIMES model, projecting an increase in energy use to 41.6 exajoules (EJ)
by 2050 under a baseline scenario, with the potential to reduce this by
up to 4 EJ through insulation improvements and technological ad-
vancements. Jradi et al. [26] introduced a digital twin framework to
optimize retrofit decisions in Denmark’s non-residential building stock,
providing  tools for energy performance enhancement,
retro-commissioning, and policy guidance. Mata et al. [27] examined
the economic feasibility of building retrofits in Sweden under five
climate scenarios, concluding that near-term energy savings and upfront
investment costs have a greater influence on profitability than long-term
climatic uncertainties, particularly for strategies targeting space heating
demand. Gonzalez et al. [28] evaluated the impact of future climate
conditions on historic buildings in Southern Europe, forecasting a 50 %
rise in energy consumption to preserve human and artifact comfort, and
underscoring the need for climate-adaptive retrofitting strategies. Dino
and Akgiil [29] investigated the implications of future overheating in
Turkey, with simulations showing significant increases in cooling energy
demand and reduced thermal comfort, reinforcing the urgency for sys-
tem redesign and energy-sector decarbonization. Qu et al. [30] analyzed
63 passive retrofit strategies for a nineteenth-century Victorian resi-
dence in the United Kingdom, identifying vacuum-insulated glazing,
infiltration control, and Polyisocyanurate insulation as the optimal
combination, achieving a 51.8 % reduction in primary energy use and an
18-year payback period. Energy-saving and life-cycle decarbonization
retrofitting of buildings encompasses comprehensive strategies aimed at
minimizing energy use and reducing greenhouse gas emissions
throughout the operational life of a structure. Cecconi et al. [31]
developed a decision support system that utilizes low-cost, data-driven
methods, including clustering techniques and Monte Carlo simulations,
to identify optimal retrofit scenarios for over one million residential
units, offering a scalable and adaptable solution under the EU Green
Deal. S. Lin et al. [32] applied a calibrated urban building energy model
(UBEM) with a 20 % prediction threshold to assess retrofitting of historic
and modern buildings on a Chinese university campus, showing energy
savings ranging from 10 % to 505 %, with the highest gains achieved
through photovoltaic systems. Tamer et al. [33] conducted long-term
forecasts of building performance in Turkey using data-driven models
over a 60-year horizon, revealing significant increases in cooling de-
mands and greenhouse gas emissions, particularly in warmer regions. Xu
et al. [34] presented an optimization methodology for school buildings
in Nanjing, China, combining building envelope analysis, energy sys-
tems, and occupancy data, achieving zero life-cycle carbon emissions
through renewable integration and design efficiency. Thrampoulidis
et al. [35] introduced a co-simulation and rolling-horizon forecasting
model to test electricity demand flexibility during retrofitting, demon-
strating that Swiss buildings can unlock considerable energy-use
adaptability, essential for integrating intermittent renewable energy
sources and improving energy management strategies.

Despite extensive research on energy efficiency and thermal comfort
optimization, a significant gap remains in developing integrated models
specifically designed for decarbonization in both new construction and
retrofitting. Existing studies often address energy dynamics and comfort
parameters in isolation, limiting their relevance for holistic building
design and effective carbon mitigation strategies. Many current frame-
works utilize advanced predictive analytics, yet lack the capacity for
dynamic adaptation to real-time data and fluctuating environmental
conditions. The absence of such adaptability restricts their utility in
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Fig. 1. Methodological framework for building energy performance simulation and analysis.

practical, performance-driven applications. This gap underscores the
necessity for innovative predictive models that unify energy consump-
tion and thermal comfort while accommodating changing usage pat-
terns and climatic variability. A comprehensive, adaptable tool is
essential to support decarbonization goals across diverse building ty-
pologies and operational contexts.

1.2. Study objective

The objective centers on developing a data-driven predictive
framework for accurately modeling building energy consumption and
indoor thermal comfort to inform decarbonization strategies in both
new construction and retrofitting. The framework integrates simulation
tools and advanced statistical modeling techniques, including multi-
variable regression and machine learning, to evaluate energy perfor-
mance under varying environmental and design conditions. Simulating
different scenarios, the model enables quantitative assessment of energy
demands and comfort outcomes, supporting optimized decisions
regarding material selection, system configurations, and operational
strategies. A core innovation lies in the unification of energy and com-
fort metrics into a single analytical system, offering dynamic, real-time
adaptability to changing usage patterns and climatic inputs. The
framework also provides a comparative analysis of retrofitting alterna-
tives, allowing stakeholders to identify the most cost-effective and
environmentally beneficial solutions. This integrative approach ad-
dresses gaps in existing literature by moving beyond isolated energy or
comfort models and delivering a scalable tool aligned with sustainable

design and net-zero carbon objectives.

The novelty of the study lies in the integration of building energy
consumption and thermal comfort into a unified predictive modeling
framework, addressing a longstanding gap in sustainable building
research. Conventional approaches that treat these domains separately,
the model employs advanced statistical and machine learning tech-
niques to enable simultaneous assessment and optimization of both
performance metrics. Real-time adaptability is embedded into the sys-
tem, allowing dynamic responses to shifting climatic conditions and
occupancy behaviors. The framework further distinguishes itself by
simulating a broad spectrum of retrofitting strategies, offering predictive
insights into cost-effectiveness and environmental impact. Incorporation
of nonlinear dynamics and variable interactions enhances model accu-
racy and relevance, delivering a robust tool suitable for diverse climatic
zones and building typologies. This integrated, data-driven approach
establishes a scalable foundation for next-generation smart building
design and decarbonization planning.

2. Methodology
2.1. Building energy performance

A structured simulation and analytical approach were followed in
the building energy performance as illustrated by the flowchart pre-
sented in Fig. 1. First, design parameters such as internal gains, building
physics, climatic conditions, and ventilation are identified and inte-
grated into a building model. The model is important in determining
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critical output variables. These variables are important in determining
indoor thermal comfort and the overall energy efficiency of the building.

The methodology bifurcates into two distinct paths: firstly, Monte
Carlo simulations are carried out with random sampling in order to
create multiple EnergyPlus Input Data Files (IDF), allowing for the deep
examination of possible building performance scenarios under diverse
conditions [36,37]. These results from simulations then undergo
rigorous processing in sensitivity analysis, main effects analysis, and
stepwise regression to determine the important predictors and in-
teractions affecting building performance. One further applies a multi-
ple regression model so as to set up simplified linear prediction
equations describing the nonlinear relations between design parameters
and energy performance outputs [38,39].

The mathematical model in the study, however, is a multiple
regression model that goes further than mere linear estimation of un-
derstanding complex relationships between input variables and pre-
dicted outcomes. This model is designed to explain not only the direct
effects of individual variables but also to capture nonlinear impacts and
interactions between different variables. These enhancements permit
more detailed, accurate modeling of the interactive influences of some
factors such as material properties and environmental conditions on
building energy performance. Such a model is crucial for developing
better performing building designs through an improved understanding
of the interactions among all the elements impacting cooling load and,
ultimately, in improving energy standards and building practices
described as:

k k k-1 k
U:a+2aizi+2bizi2+z Zcijzizj+e (1)
i=1 i=1

=1 j=itl

where, U is the predicted output, z; is the ith input, a is the intercept of
the relationship, a; b; and c; are the regression coefficients for the
linear, quadratic, and interaction terms respectively, and e is the term of
error.

A black-box model, therefore, helps in the analysis of building design
strategies using historical data to make forecasts and understand the
complicated relationships [40]. In this statistical approach, the outcome
variable is modeled as a function of multiple independent variables
capturing both direct and interactive effects. It is referred to as a
black-box model because it pays attention only to the input-output re-
lations and does not give clear, mechanistic insight into how the internal
system works. Analyzing past performance data of buildings helps in
deriving predictive insights through such models, which can be put to
use for optimizing future building designs toward improved energy ef-
ficiency and performance.

Monte Carlo analysis takes this further and complements the same by
using statistical sampling techniques to effect robust simulations using a
range of inputs, all drawn from probability distributions in modeling
different scenarios related to building designs [41]. This is fundamental
to understanding how uncertainties in the input variables arising from
several sources such as material properties, climate, and usage patterns
may affect the building’s performance. Each time a simulation is run,
possible outcomes are created based on random sampling, and these
collectively form a probability distribution of possible outcomes. Which
offer designers and engineers a probabilistic view of building perfor-
mance and allow the formulation of design strategies that are resilient
and optimized under a range of possible conditions. The inclusion of
quadratic terms in the model allows for consideration of nonlinear dy-
namics between variables, while the interaction terms reveal how the
interplay between pairs of variables affects the outcome. These inter-
action terms help to explicate how the Solar Heat Gain Coefficient
(SHGC) of glass combined with the window area affects the cooling load,
describe as:

Results in Engineering 26 (2025) 105475
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where, G; be the function representing the relationship between inputs
and the output for each observation i, M be the matrix size, j the input
factors number, u; be the input variables, and w; be the output variable
for each observation.

This work intends to assess the impact on four different outputs: Peak
Cooling Load, the maximum instantaneous cooling demand for an
overall considered period of time; Annual Cooling Load, that considers
the total cooling energy need; Weighted Exceeding Hours, the number of
hours during which an indoor environment violates specific comfort
limits; and an overall indicator named EQTC, standing for Environ-
mental Quality Indoor Thermal Comfort, to estimate the general indoor
environment quality about the considered thermal environment.
Moreover, such outputs are very important for green building certifi-
cation because directly related to that are the criteria of energy effi-
ciency and environmental impact, which constitute parts of any
certification standard [42,43]. The choosing and defining of input pa-
rameters of building simulation models is a pivot point since the accu-
racy and relevance of analysis strongly depend on them.

This complexity becomes apparent due to the many variables
affecting building performance, as all are interacting with each other in
a dynamic built environment. The parameters include building geome-
try, which determines the spatial characteristics and surface area
exposed to environmental conditions that affect energy demands for
heating and cooling [44]. The envelope thermo-physics is a factor
involving thermal properties of materials used in building walls, roofs,
and windows, which determine heat transfer rates and thus influence
thermal loads and comfort levels inside the building [45]. The other
major input parameter is HVAC system operation, including efficiency,
design, and control systems of heating, ventilation, and air conditioning
units [46]. They are imperative for indoor environmental quality and
comfort, and the way they can function can hugely vary depending on a
building’s design and patterns of use. Weather conditions become a
basic parameter since variations in temperature, humidity, solar radia-
tion, and wind can all hugely change a building’s thermal loads [46].
Architectural and engineering practices therefore impact the choice of
technologies, design standards, and operational strategies that all
determine how the building performs under various scenarios [47,48].
Those practices now integrate the concepts of sustainability and the
innovations in building technology to reduce energy consumption while
improving the comfort and health of building occupants. Those are the
factors that require much attention and should be modeled accurately to
ensure the simulations are realistic and add value to building design and
operation.

2.2. Evaluation of indoor thermal comfort using EQTC

The EQTC metric offers a detailed assessment of both environmental
and physiological parameters to evaluate indoor thermal comfort,
ensuring alignment with occupant needs. Utilizing the Predicted Mean
Vote (PMV) and Predicted Percentage of Dissatisfied (PPD) indices
widely recognized thermal comfort measures EQTC bases its predictions
on six key variables: clothing insulation, air velocity, metabolic activity,
air temperature, relative humidity, and mean radiant temperature
(MRT) [49,50]. Standardized inputs within the model assume a clothing
insulation value of 0.55 clo, reflecting typical indoor conditions, and an
air velocity of 0.15 m/s to represent gentle airflow [51,52]. Simulation
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Table 1

Categorization and weighting of thermal comfort levels in EQTC assessment.
Category PMV Range Weight Description
1 [-0.1, +0.1] 100 Most comfortable, highest weight
I [-0.3, +0.3] 75 Moderately comfortable
il [-0.5, +0.5] 40 Least comfortable, lower weight

Table 2

EQTC rating levels and score intervals.

Rating level Interval of EQTC

Level A 100-90
Level B 90-75
Level C 75-60
Level D 60-45
Level E 45-30
Level F 30-15
Level G 15-0

and analysis of these parameters are conducted using advanced building
performance software such as EnergyPlus, allowing for high-resolution
environmental modeling [53]. To assess performance across seasonal
variations, the model calculates the percentage of time indoor condi-
tions remain within defined thermal comfort classes, as outlined in
Table 1. This approach enables year-round evaluation of continuous
PMV values under a range of climatic and operational scenarios [54,55].

Thermal comfort conditions within a building can be systematically
classified and quantified based on the frequency with which indoor
environments remain within occupant-accepted comfort ranges. This
classification framework incorporates multiple comfort levels, each
assigned a specific weight to reflect its relative desirability or accept-
ability. The cumulative sum of these weighted comfort levels forms the
basis of the EQTC assessment, providing a comprehensive measure of a
building’s effectiveness in sustaining optimal thermal comfort over a
defined period.
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Eq. (3) in the model provides a formula for calculating the EQTC,
which integrates varying levels of comfort into a single metric.

EQTC =1x100+1I x 75+ III x 35 3)

Table 2 show the EQTC uses system levels to evaluate the thermal
environment within a space, ranging from 0 to 100. This index divides
into seven rating levels, each representing a different range of comfort.

During the evaluation process, the exceedance metric identifies each
instance within a specified period such as a day or a year when indoor
temperature surpasses the defined comfort threshold for a duration of at
least one hour. In addition to frequency, the metric also accounts for the
severity of exceedance, quantifying temperature deviations above the
comfort range by specific margins, such as 1 °C or 5 °C..

" Lh PPDIL if PMV; >0.5
WE = %wherevi = { PPDI, e 4
0 otherwise

where, WE represent the duration of weighted exceedance, v; as the
weighting factor for each time step, h; to represent the time step in hours,
PPDI; as the PPDI at each time step, and PPDI .« as the limit for comfort
of PPDIL.

2.3. Simulation model of a multi-floor open office building layout

A detailed simulation model of a multi-story mid-rise office building
was developed to evaluate energy efficiency and the influence of
architectural design on sunlight modulation. The structure is segmented
into clearly defined thermal zones, including core zones and perimeter
areas on each floor, with the perimeter spaces being directly affected by
external conditions through the facade. As shown in Fig. 2, the model
integrates overhangs positioned above the windows, quantified by the
overhang projection ratio (depth-to-height), which play a pivotal role in
reducing direct solar gain. These passive shading elements are particu-
larly effective in limiting heat gain during summer months while

FEEERE

Fig. 2. Schematic representation of multi-floor open office building with overhang projection.
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Table 3
Variables and their ranges in building design simulation.

Design Features Variable Description Range Remarks

Climatic Conditions 1 Max temp on design day 33.5-35.5°C
Va2 Daily avg cooling degree hours 55.6-65.6 °C-hour
V3 Daily avg global solar radiation 4.3-5.8 Wh/m? Applies to perimeter zones only

Building Envelope Va Aspect ratio 0.6-2.5
Vs Floor-to-ceiling height 2.6-3.6 m Applies to perimeter zones only
Yo Building orientation —180-180 degrees For model validation N, E, S, W
y7 Ratio of window to floor area 0.25-0.55 Applies to perimeter zones only
Vs SHGC of glass 0.31-0.77 Applies to perimeter zones only
Yo Thermal transmittance of glass (U-value) 1.8-5.8 W/m2K Applies to perimeter zones only
Y10 Projection ratio of overhang 0.01-1.2 Applies to perimeter zones only
y11 U-value of wall 0.455-2.325 W/m*K Applies to perimeter zones only
V12 Thermal mass of wall 300-700 kJ/m*K Applies to perimeter zones only
V13 Absorptance of wall exterior surface 0.35-0.75 Applies to perimeter zones only

Internal Heat Sources V14 Thermal mass inside building 35-190 kJ/m%K
V1s Power density of equipment 8-25 W/m?
Y16 Lighting power density 5-18 W/m?
Y17 Density of occupants 0.06-0.18 person/m?
V18 Metabolic rate of occupants 115-145 W/person

Airflow Characteristics Y19 Air infiltration rate 0.01-0.2 Air Changes / Hour
Va0 Air ventilation rate 0.45-1.55 1/s-m?

Thermal Control Va1 Set-point of indoor temperature 25.0-27.0 °C

Table 4
Climatic parameters for design day and typical meteorological year across
selected three cities.

Climate Data Metric symbol ~ Baghdad  Mosul  Basra
Design Day Temperature
Dry- (Wet-) bulb at 0.4 % T0.5% 36.6 38.5 39.7
occurrence
Dry- (Wet-) bulb at 1.0 % T1.5% 35.4 34.2 34.4
occurrence
Dry- (Wet-) bulb at 2.0 % T25% 35.4 34.6 35.7
occurrence
Typical Meteorological Year Data
Hours of avg. daily cooling CDH 60.1 65.4 70.6
degree
Avg. daily solar radiation SR 4 4.5 4.5

permitting beneficial solar exposure during winter, when the sun’s angle
is lower. This passive design strategy significantly enhances indoor
thermal comfort within perimeter zones. The configuration exemplifies
how architectural interventions can be used to optimize natural
daylighting, lower building energy demands, and improve occupant
comfort across multiple floor levels.

The building model defined by a given side dimension of 40 m and an
aspect ratio between 0.6 and 2.5 modifies the building depth with regard
to its width in such a way that it can accommodate diverse site con-
straints and aesthetic preferences. It employs the 21 input variables
listed in Table 3, covering a wide spectrum of design features crucial to
the simulation and analysis of building thermal and energy dynamics.

Table 4 presents a comparative analysis of climatic parameters be-
tween design day conditions and typical meteorological year data for
three major cities. Temperature values are reported across various per-
centiles, capturing the range from average to extreme heat conditions,
and are accompanied by indicators related to cooling demand and solar
radiation exposure.

2.4. Model validation

The model was validated using the following four key metrics: Co-
efficient of Variation of the Root Mean Squared Error (CVRMSE), Mean
Absolute Percentage Error (MAPE), Weighted Average Prediction
(WAP), and Coefficient of Determination (R?) [56-58]. CVRMSE was
used as a measure of the accuracy of the model predictions, relative to
the scale of the observed data, thus showing the consistency of the

model. MAPE measured the average size of the errors as a percentage,
making it easy to interpret predictive accuracy. The WAP considered the
importance of different predictions by weighting them, which gave a
balanced assessment with varied data points. R*> measured the propor-
tion of variance in observed data explained by the model, giving an
indication of the goodness-of-fit of the whole model.

CVRMSE (%) =$ X (5)
MAPE(%) = 100 x + $ [ % =P 6)
NZ| 4
N S
WAP = Pk @)
; (Zjl'vlsj)
R2 _ ZII:,:I (pk — D)2 (8)

- > (d— D)’

where, D is the mean of the actual values, N is the total number of ob-
servations, dy is the actual data value for the kth observation, py is the
predicted data value for the Kt observation, Si is the area of the Kt space
or unit, and D is the mean of the actual data values

3. Results and discussions

The key findings derived from the simulation models, statistical
analyses, and validation processes outlined in the methodology pre-
sented in this section. The performance of the proposed predictive
framework is evaluated in terms of energy consumption, indoor thermal
comfort, and sensitivity to architectural and climatic variables. Valida-
tion metrics are compared against relevant literature to assess accuracy
and robustness, while parametric analyses explore the influence of
design and operational factors. The results also highlight the effective-
ness of passive design features, retrofitting scenarios, and zone-specific
energy behavior, offering insight into optimized strategies for
enhancing building energy performance and occupant comfort.

3.1. Nonlinear dynamics in MLR models through OFAT analysis

This section presents simulation results that offer critical insights
into the nonlinear relationships between input variables and model
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outputs. The OFAT method was employed by systematically varying
individual input parameters while holding others constant, enabling an
isolated assessment of each variable’s influence on energy performance
metrics [59,60]. This approach revealed complex interactions and
nonlinear effects that are typically overlooked in conventional linear
regression models. The analysis identified specific variables exerting
strong nonlinear impacts on model predictions, reinforcing the necessity
of incorporating nonlinear dynamics to ensure accurate representation
of system behavior [61,62]. As illustrated in Fig. 3, the variation in both
annual and peak cooling loads with respect to building orientation
demonstrates a clear symmetrical trend. The annual load decreases from
-180° to 0°, reaching a minimum at 0°, before rising again toward 180°,
suggesting that deviations from this central orientation result in
increased energy demands. Similarly, the peak load exhibits elevated
values around —150° and -120°, followed by a decline toward 0°, and a
subsequent rise approaching 180°. These findings highlight orientation
as a key driver of energy performance, confirming the relevance of OFAT
analysis for enhancing model precision and understanding the influence
of baseline design parameters.

Fig. 4 presents the relationship between building orientation and two
key performance indicators: EQTC and WEiTC. The top graph demon-
strates that EQTC values generally range from approximately 12 to 18 h
per day, with the highest performance occurring near 0° orientation. A
gradual decline is observed as the orientation shifts toward —-180° and
180°, where values reach their minimum. The lower graph illustrates a

similar trend for WEiTC, which spans approximately 6 to 8 h per day.
Peak values are again observed at 0°, while orientations at the extremes
show reduced performance. These symmetrical patterns indicate that
both thermal comfort metrics are optimized around the central orien-
tation, with significantly diminished efficiency and control at peripheral
angles, highlighting the importance of orientation in passive design
strategies.

Fig. 5(a) shows the relation between indoor temperature set-point
and peak and annual load. As the indoor temperature set-point rises
from 24 to 26 °C, the peak load drastically drops from 125 W/m? to 95
W/m? A higher indoor temperature set-point tends to decrease the
cooling demand during the peak time. The annual load also decreases
with an increase in indoor temperature set-point: from 240 kWh/m? at
24 °C to 200 kWh/m? at 26 °C. A clear trend arising here is that the
higher the indoor temperature set-point maintained for the whole year,
the larger the energy saved. Fig. 5(b) shows the dependence of WE and
EQTC on indoor temperature set-point. As the indoor temperature set-
point increases, WE decrease from 30 C°-hour/day at 24 °C to
0 C°-hour/day at 26 °C, which is indicative of a direct relationship be-
tween higher temperature set-points and reduced thermal discomfort.
On the contrary, EQTC rises with increased indoor temperature set-
points, rising from 0 at 24 °C to 100 at 26 °C.

Fig. 6(a) indicates the variation in peak and annual load due to
SHGC. Peak and annual loads increase linearly with increasing SHGC
from 0.4 to 0.9. In fact, the peak load increases from 100 W/m? at an
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SHGC of 0.4 to 125 W/m? at an SHGC of 0.9. The annual load also rises
from 200 kWh/m? to 250 kWh/m? within the same range of SHGC.
These trends mean that higher SHGC values, relating to more solar heat
gain via windows, result in significant increases in cooling demand and
overall energy consumption. Fig. 6(b) presents the tendency of SHGC
with WE and EQTC: as SHGC increases from 0.4 to 0.9, WE decrease
from 30 C°-h/day to 5 C°-h/day, showing a decline in the state of
thermal discomfort as the SHGC increases. On the other hand, EQTC
drops from 100 to 50 with an increase in SHGC, indicating a drop in the
thermal comfort index.

3.2. Spatial energy and thermal load simulations results

These outputs emulate a detailed energy performance of all building
zones using EnergyPlus and Monte Carlo experiments. The result shows
large differences in design peak loads and annual energy loads in
perimeter compared to core zones. Specifically, the design peak load for
the perimeter areas is between 54 and 198 W/m?, while core areas have
a peak load of between 42 and 106 W/m?, as shown in Fig. 7. This dif-
ference shows that the cooling loads of the perimeter zones are normally
higher than those of core areas since they are directly exposed to outside
thermal conditions.

Significant disparities are observed in annual energy loads between
core and perimeter zones, with perimeter zones exhibiting a range from
152 to 506 kWh/m?, while core zones range between 142 and 395 kWh/
m?. These variations have critical implications for energy management,
emphasizing the necessity for zone-specific HVAC strategies to achieve
optimized energy performance. In addition, the WE daily average metric
serves as a valuable indicator for evaluating thermal comfort levels
across different zones and for tracking temporal shifts in indoor envi-
ronmental conditions throughout the day.

The EQTC values provide fundamental information concerning
thermal comfort inside the building. Greater variability in EQTC values
for perimeter areas compared to core areas indicates a greater need for
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dynamic and responsive climate control systems in the perimeter zones.
This is very important for keeping indoor thermal comfort constant,
hence improving the satisfaction of the occupants and reducing energy
consumption. The obtained simulation results underline the importance
of the distinction between core and perimeter areas for effective energy
and comfort control.

Comparing the results, clear differences between core and perimeter
areas in building thermal comfort indicators can be appreciated. Core
areas: WE range between 0 and 36 h/d, indicating that this area would
generally have a more stable thermal environment compared with the
perimeter areas, which showed a WE ranging from O to 45 h/d. Such
variability of the perimeter areas is due to their exposure in outside
temperature oscillations, aside from sunlight absorption, hence it causes
surface temperatures to rise—thereby making thermal comfort man-
agement at the perimeter areas difficult to manage and becoming more
dynamically controlled through HVAC systems. This also manifests
through the EQTC scores, as all values pertain to an overall range be-
tween 0 and 100 in both the core and perimeter zones. Nevertheless,
with a surge in the temperatures along the perimeter zones, high values
for PMV and PPDI demonstrate increased risks of suffering thermal
discomfort. It is clear that such disparities require targeted strategies
because maintaining consistent indoor comfort in the perimeter zones is
vital for overall building efficiency and the comfort of occupants.

3.3. Sensitivity analysis results

Sensitivity analysis results, as illustrated in Fig. 8, reveal that
different input parameters exert varying levels of influence on annual
cooling load, peak load, work efficiency, and EQTC across perimeter and
core zones. These variations highlight the zone-specific impact of design
and operational factors on thermal and energy performance outcomes.

The peak load results show that the perimeter and core zones are
sensitive to different extents by various parameters (y1 to y21). For the
perimeter zones, the sensitivity coefficient values vary between —0.1
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and 0.5. The lowest sensitivity is that of y1, with a coefficient of —0.1,
which indicates a very slight negative influence on peak load. The
highest sensitivity in perimeter zones is that of y7, with a coefficient of
0.5, indicating a strong positive influence on peak load. In core zones,
the coefficients range from 0 to 0.6. The most sensitive is y21 with a
coefficient of 0.6, and the coefficients for a few parameters (y1, y2, y3)
are equal to zero thus they do not affect the core zone.

3.4. Annual cooling load

Sensitivity analysis in the perimeter zones gives the coefficients be-
tween —0.2 and 0.5. The least sensitive is y1 with a coefficient of —0.2,
and the most sensitive is y7 with a coefficient of 0.5. Core zones have
coefficients between 0 and 0.6; the highest sensitivity in y20 at 0.6
suggests that this parameter imposes a strong positive influence. Similar
to the peak load, some parameters (y1, y3) impose little or no effect on
the annual cooling load within core zones.

From the sensitivity analysis, the coefficients for the perimeter zones

are between 0 and 0.3. The most sensitive of all the perimeter zones is
y15 at 0.3; hence, this has a very high positive effect on work efficiency.
For the core zones, the sensitivities range between 0 and 0.5, with the
highest being y19 at 0.5; hence, a strong positive impact on work effi-
ciency. Coefficients representing many parameters in the core zones y3,
y4 show zero coefficients, meaning they are not of importance in
changing work efficiency.

For EQTC, the sensitivity coefficients range from —0.5 to 0 in the
perimeter zones. For the perimeter zones, y20 has the most negative
coefficient of —0.5, hence it exerts the strongest negative influence on
EQTC. The core zones range from —0.5 to 0.1. In that regard, only y1
exhibits a feeble positive effect amounting to 0.1. Majority of the pa-
rameters have negative coefficients; thus, they pull down EQTC in the
core zones.

Sensitivity analysis results show that the influences of different pa-
rameters on annual cooling load, peak load, work efficiency, and EQTC
are different in both the perimeter and core zones. Parameters like y7,
y20, and y21 have larger positive influences, especially in core zones,



S. Algburi et al. Results in Engineering 26 (2025) 105475
0.6 X Perimeter Zones ¥&¢ Lo
Core Zone Rad
‘/
-
/”
e
0.4} //
/”
/’/
3
-
S o2t 427
7 R
o PR
2 v e Yk ¥17
.
5 g v8&¢ y20
o 0.0} y20 ¥33-918 y16, y15¢
=4 g
0 e
-
/”
-
-0.2f //’
/”
-
-
/”
-0.4f 7
-0.4 -0.2 0.0 0.2 0.4 0.6
SRC for Annual Load

Fig. 9. The variables of SRC in peak load and annual load.

while parameters like y1 and y2 have lower or negative influences.
Sensitivity analysis results highlight the primary factors influencing
annual cooling load and overall building performance. Among all vari-
ables, the Cooling Degree Days (CDD24) demonstrates the highest
Standardized Regression Coefficient (SRC) for annual cooling load,
confirming that climatic variations significantly affect cooling demands
and reinforcing the necessity of accurate climate data integration in
energy modeling. Global Solar Radiation (GSR) ranks second in sensi-
tivity, underscoring the impact of solar gains on energy performance and
the critical role of solar control strategies in reducing consumption.
Envelope-related variables including the overhang projection ratio,
window-to-floor-area ratio, and orientation emerge as key determinants
in regulating solar heat gain. The orientation parameter, with a peak
cooling load SRC of 0.44, reveals a substantial influence on thermal load
distribution. The Solar Heat Gain Coefficient (SHGC) also exhibits strong
sensitivity, as it directly governs the transmission of solar radiation
through fenestration, thereby affecting internal heat accumulation.

Although the U-value of the envelope shows comparatively lower
sensitivity, results suggest that insulation alone offers limited energy
savings without concurrent passive design measures. Regarding internal
conditions, the temperature set-point records the highest SRC for EQTC,
indicating a significant impact on thermal comfort. Additional contrib-
utors include occupant density, lighting power density, and ventilation
rate factors that collectively shape internal heat gains and thermal bal-
ance. In contrast, internal thermal mass demonstrates relatively low
sensitivity, suggesting a minimal effect on comfort compared to other
operational variables. These findings offer a data-driven basis for
prioritizing design and operational strategies that optimize both energy
efficiency and occupant well-being.

Fig. 9 shows the SRC for the annual load versus peak load relation-
ship in different zones. The result reveals the features of load distribu-
tion and planning resource allocation efficiently across different zones.
However, some variables such as room orientation (y6) exhibit diver-
gent effects on annual versus peak cooling loads; that is, their
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relationship does not follow the diagonal line. This would suggest that
room orientation is a more subtle factor, having different effects on
building energy performance depending on whether the focus is on peak
or annual loads.

Fig. 10 presents a scatterplot of SRC for WE and EQTC, revealing an
inverse correlation between the two metrics. The SRC values exhibit
similar magnitudes but opposite signs, indicating that variables
contributing positively to one metric tend to negatively influence the
other. The close alignment in absolute SRC values suggests that both
output variables respond to the same set of inputs in a consistent yet
opposing manner, highlighting a trade-off between optimizing energy
efficiency and thermal comfort.

Fig. 11 Scatterplot of SRC for annual cooling and EiTC load versus
different input variables. It was found that some of the variables have
high values of SRC on both EQTC and annual cooling load, indicating
their crucial importance in the overall building performance. Similarly,
room orientation (y6), window area ratio (y7), SHGC (y8), and overhang
projection ratio (y10) all have large SRC values, which impose great
influence on both thermal comfort and energy consumption. The tem-
perature set-point (y21) and ventilation rate (y20) also show large SRC
values, especially in regard to EQTC, which indicates that precise con-
trol of these parameters is necessary to keep indoor comfort. The scat-
terplot emphasizes the fact that while some variables may have a strong
effect on both EQTC and annual cooling load, the nature of the influence
can be quite different. This double visualization helps to understand in
detail how various design and operational factors contribute to both
thermal comfort and energy efficiency and lead to optimal building
performance strategies.

3.5. Multi-Linear regression (MLR) model developed

The MLR model was developed using the MLR method for the pre-
diction of peak load and WE in buildings. The performance of the models
was evaluated using various statistical metrics, including R? values,
MAPE values, and CVRMSE values. The R? values represent the pro-
portion of the variance in the dependent variable that is predictable
from the independent variables, where higher values indicate better
model fit. Stepwise regression technique with both forward and back-
ward elimination of variables was also used for model development in
this regard in order to present the most likely predictors of MRL. To
begin with, the forward selection technique added all variables to a
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model one by one according to their contribution on the basis of per-
formance and evaluated inclusion using Bayesian Information Criterion
(BIC). The BIC prevents overfitting by penalizing the number of pa-
rameters in the model, ensuring that it only includes variables that
provide a statistically significant improvement in the model. Overfitting
occurs when the models are too complex and start capturing the noise in
the data rather than the pattern of the data. Interpret results from the
model: SRC were used to give a relative importance score to each pre-
dictor variable. The analysis showed that variables like GSR have an
important impact on the peak load and WE model, hence proving the
usefulness of the MLR approach in understanding and predicting
building energy performance.

Table 5 displays the results of a stepwise regression analysis,
including introduced variables with their respective regression co-
efficients, correlations, and statistical errors. Stepwise regression is one
of the regression methods where the selection of the prediction variables
is done through an automated procedure. The analysis highlights pa-
rameters that significantly influence peak load, annual load, WE, and
EQTC within renewable energy models. These regression coefficients
represent the strength and direction of the influence of each variable.
This detailed breakdown in the critical factors affecting building energy
performance informs the development of more efficient renewable en-
ergy models.

Results of a stepwise regression analysis are given in Table 5, where
R? is an important metric presented for various dependent variables:
peak load, annual load, WE, and EQTC. All R? values are very high,
showing that models’ predictions are precise and vary between 0.92 and
0.96 for peak load, 0.94 and 0.97 for annual load, 0.92 and 0.96 for WE,
and 0.95 and 0.97 for EQTC. These R? values mean that the regression
models explain a great deal of the variance in these variables, indicating
their predictive power and reliability.

The MAPE and CVRMSE as measures of model accuracy and error.
For the annual load, the MAPE falls within the range 1.6 % to 3.55 %,
which is a low percentage error and an indication of high model preci-
sion. On the other hand, WE have a higher MAPE range of 12.3 % to
15.55 %, indicating greater variability and less precision in the pre-
dictions for WE. Similarly, the CVRMSE for annual load ranges between
1.1 % and 3.3 %, further emphasizing the accuracy of the model, while
for WE, the CVRMSE ranges between 18.33 % and 25.5 %, further
indicating higher error and lower reliability in the prediction of WE
compared to the annual load. Percentages of explained variation for
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Table 5

Analysis using stepwise regression, covering introduced variables, regression coefficients, correlations, and statistical errors.

y10 y11 y15 y16 y17 y18 y20  y21 MAPE  CVRMSE R2

y9

y5 y7 y8

y3

yo y2

Orientations

Parameter

0.94

4.50 %
6.40 %
4.60 %
5.90 %
4.50 %
1.20 %
1.60 %
2.10 %
3.50 %
2.20 %

3.20 %
4.30 %
3.40 %
3.80 %
2.40 %
1.70 %
2.60 %
3.50 %
2.40 %
1.80 %
12.80

%

—3.57
—3.68
—3.48
—3.44
—2.25
—13.44
-12.87
-12.37
—12.44
—8.59
12.87

35.66
32.16

98.05
92.21

0.91
0.93
0.93

2

0.96
0.9

0.95

—0.002
—0.002
—0.002
—0.001

—2.44
~30.67

22.76
56.07
20.48
62.33

10.33
30.45

85.53

N

Peak load

0.93
0.94

77.94

0.93
0.96

35.74
34.84
36.25
52.88
53.22
55.47

97.78
101.45
97.97

0.94

3.

0.94
1.06
1.07

—1.53
—25.59

9.29
36.22

86.42
72.54
57.65

0.98
0.97

297.34

15
08

3.33
3.55

—6.88

-3.34
-3.21

50.32
89.44

10.98
31.77
33.68
36.24

3.22
3.86

112.14
63.03

N

Annual load

307.66

3.

—31.43
—41.89

—30.22

4
0.97
8

54.59
50.88

312.67
309.52
310.41
21.41

3.22
3.34
3.54
0.39

3.19
3.68
3.24

—3.87
—3.43

87.67
101.91

4.23
3.86
2.45

36.65
43.85
62.52

0.97

18.50 %

0.78

0.99

-1.53

9.34

3.43

—0.68 -1.97

0.32

—429.37

N

Annual load

13.70 18.20 % 0.96
%

12.63

0.34 18.33 0.76

0.56

—6.53

1.53 -2.65 7.07 16.36

0.12

—424.32

0.94

15.80 21.80 %
%

13.24

0.76

0.37 18.85

0.81

—8.22

5.35 —2.52 7.56 16.65

0

—452.78

0.95

18.80 %

14.40
%

0.38 17.38 0.64 12.21

0.94

—5.95

1.04 -2.79 7.75 17.28

0.16

—405.03

0.96

15.60 25.90 %
%

18.98

0.86 33.28 0.97

0.55

—607.63

0.95
0.96

0.

6.80 %
8.70 %
8.50 %
8.60 %
7.60 %

5.10 %
6.70 %
6.80 %
6.40 %
5.50 %

—-29.17

-1.85
—1.88
-1.97

—0.88
—0.84
—0.89
—0.84
-1.63

3.16

11.57

—20.55

—6.37

-12.87
—13.74
-13.38

—4.12
—8.23
-11.82

—8.67

1062.21

N

EQTC

—30.25
—31.89
—29.92

—38.19

-33.39

1113.62
1161.05
1092.62
1343.13

96
0.96
0.96

-1.78
—2.23

-73.77

-1.10

15.43
10.99

—32.88
—35.78
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each variable further affirm the models’ robustness. The peak load
variation explained ranges from 91 % to 96 %, annual load from 92 % to
97 %, WE from 94 % to 96 %, and EQTC from 93 % to 96 %. The high
percentages of explained variation underscore the effectiveness of the
models in capturing the main trends and patterns in the data. Taken
together, these metrics indicate that the models perform in a generally
accurate and reliable way in predicting the respective variables, and that
annual load and EQTC especially demonstrate strong performance
metrics across all measures.

Table 6 presents a comparative analysis of validation metrics be-
tween the proposed predictive model and several established models
from the literature. The summary underscores the model’s robust per-
formance in terms of accuracy and consistency, particularly when
evaluated alongside other advanced simulation and machine learning
frameworks.

Table 7 presents a comprehensive analysis conducted without
applying stepwise regression, incorporating all input variables within
the model framework. The reported correlation coefficients indicate the
strength and direction of relationships among variables, while statistical
performance indicators such as MAPE, CVRMSE, and R? are provided to
assess model accuracy and reliability. This full-variable approach offers
deeper insight into both direct and indirect effects, supporting evalua-
tion of the model’s robustness and predictive capability.

3.6. Comparison of linear regression models with/without interaction
terms

This section presents a comparative analysis of linear regression
models with and without interaction terms, incorporating quadratic
expressions to enhance predictive complexity and accuracy for building
performance metrics. Model validity was evaluated using 650 inde-
pendent simulation cases, assessing performance indicators such as peak
load, annual load, WE, and EQTC. Accuracy verification against Ener-
gyPlus simulation outputs confirmed the reliability and robustness of the
proposed models.

e Nonlinear terms and model accuracy: Incorporating nonlinear
terms into the regression model has significantly improved its ac-
curacy. This enhancement is evident in the Mean Absolute Percent-
age Error (MAPE) reduction from 1.76 % to 1.42 %, indicating a
more precise model. Additionally, the WE model, which assesses
thermal comfort, shows a marked improvement in MAPE from 13.44
% to 9.52 %.

e Simple linear models and peak load estimation: While simple
linear models are effective in estimating certain aspects such as peak
load, as shown in subplot (a), where R? values are exceptionally high
(0.97 and 0.99), they may not fully capture the intricacies of thermal
comfort predictions. The R? values indicate a strong correlation be-
tween the predicted and actual peak load values, demonstrating the
model’s robustness in this area.
Simplified model for rapid assessment: The simplified regression
model with nonlinear terms offers a practical solution for rapid
assessment of cooling demand during the design stages of building
projects. This model allows for quick and accurate predictions
without the need for extensive computational resources, making it an
invaluable tool for architects and engineers. Leveraging this
enhanced model, professionals can make informed decisions early in
the design process, optimizing building performance and ensuring
efficient energy usage.

Table 8, gives the performance metrics of the regression models. The
results across the board are better for the model with interaction terms,
mainly in terms of model accuracy and quality of fit. In terms of annual
load and WE indicators, the model with interaction terms has lower
MAPE and CVRMSE. This model also has higher R2 values for peak load
and EQTC indicators, which shows that it is better able to capture



S. Algburi et al.

Results in Engineering 26 (2025) 105475

Table 6

Comparative validation metrics of the proposed predictive model with related literature.
Study / Model R? (Annual Load) MAPE ( %) CVRMSE ( %) Validation Method / Tool Reference
Current Study (MLR + Interaction Terms) 0.98 1.59 1.47 Monte Carlo + EnergyPlus Present Study
Alghamdi et al. (2024) — ANN + Monte Carlo >0.97 <2.0 - ANN + EnergyPlus + Monte Carlo [14]
Gabrielli and Ruggeri (2019) — Optimization model 0.95 2.5 2.0 Simulation + Uncertainty Analysis [17]
Jafarpur & Berardi (2021) — Climate setpoint model 0.94-0.97 1.6-9.1 - Energy simulation under climate scenarios [19]
Rabani et al. (2021) — CFD + Daylight + Energy — ~2.0 - Coupled simulation models [18]

complicated cross-variable relationships and make more precise
predictions.

3.7. Carbon emission reduction potential

Achieving Net-Zero Carbon status in the building sector necessitates
not only minimizing energy consumption but also accurately quanti-
fying the resulting carbon emission reductions. Simulation outcomes
from the current study indicate significant decreases in annual cooling
loads through optimization of key parameters such as indoor tempera-
ture set-point, glazing characteristics (SHGC and U-value), and window-
to-floor area ratio. These energy savings translate directly into lower
carbon emissions when applying the regional electricity carbon in-
tensity. For instance, implementation of optimal temperature settings
and passive architectural measures yielded cooling load reductions of up
to 50 kWh/m? annually. With an emission factor of 0.45 kg CO2/kWh,
this corresponds to an estimated carbon reduction of 22.5 kg CO2/m?/
year. Table 9 provides a summary of estimated emission reductions
under various retrofit scenarios.

4. Conclusions

This study introduced a comprehensive predictive modeling frame-
work designed to evaluate and optimize building energy consumption
and indoor thermal comfort, with a specific emphasis on achieving Net-
Zero Carbon targets. A detailed case study was conducted on a typical
office building exposed to three distinct climatic conditions Baghdad,
Basra, and Mosul using actual weather data and a range of 21 design and
operational parameters. The objective was to assess and enhance cooling
load performance and thermal comfort through targeted design and
retrofitting strategies. The methodology integrated EnergyPlus simula-
tions with Monte Carlo analysis and multi-linear regression (MLR)
models incorporating both interaction and quadratic terms [63,64]. This
enabled the capture of nonlinear relationships between critical design
variables including SHGC, indoor temperature set-point, and
window-to-floor area ratio and key performance indicators such as
annual and peak cooling load, WE, and the EQTC index. The Results key
findings:

The developed predictive model demonstrated high accuracy, with
R? is 0.98, MAPE is 1.59 %, and CVRMSE is 1.47 %, confirming its
reliability in estimating cooling loads and thermal comfort metrics.
Optimizing the indoor temperature set-point from 24 °C to 26 °C
reduced the peak cooling load from 125 W/m? to 95 W/m?
contributing to significant energy savings without compromising
comfort.

Reducing the SHGC from 0.9 to 0.4 resulted in a decrease in annual
cooling demand of up to 50 kWh/m?, highlighting the effectiveness
of glazing performance improvements.

Combined retrofitting strategies optimizing set-point temperature,
SHGC, and glazing U-value achieved total annual energy savings of
up to 70 kWh/m?,

These energy savings correspond to a potential carbon emission
reduction of 31.5 kg CO2/m?/year, based on a regional emission
factor of 0.45 kg COz/kWh.
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e The EQTC index improved from 50 to 100 under optimal design
configurations, indicating a substantial enhancement in indoor
comfort.

Spatial performance analysis showed higher cooling loads in
perimeter zones (up to 198 W/m?) compared to core zones (as low as
106 W/m?), emphasizing the importance of zone-specific HVAC and
design strategies.

The outcomes validate the effectiveness of the modeling framework
as a decision-support tool for enhancing energy efficiency, thermal
comfort, and carbon reduction in building design and retrofitting. The
approach is scalable, adaptable to diverse climate zones, and applicable
for use by architects, engineers, and policymakers advancing Net-Zero
Carbon building initiatives.

Study limitations

Despite comprehensive modeling techniques and extensive valida-
tion processes, several limitations remain. The predictive framework
primarily relies on simulation data and does not incorporate real-time
adaptive behavior or occupancy variability beyond predefined sce-
narios. Climatic inputs were restricted to selected cities within a specific
geographical region, potentially limiting the generalizability of the
findings to broader climate zones. The Monte Carlo analysis, while
robust, utilized fixed parameter distributions that may not fully reflect
the dynamic fluctuations found in real-world building environments.
Furthermore, the model focused predominantly on cooling loads and did
not extensively account for heating requirements or seasonal thermal
performance variability. The EQTC metric, although comprehensive, is
subject to assumptions inherent in the PMV-PPDI model, which may not
fully capture the subjective comfort perceptions of all occupants. Future
extensions may address these gaps through integration of real-time
building performance data, broader climatic datasets, and advanced
comfort modeling techniques incorporating behavioral and adaptive
responses.
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Table 7

Comprehensive analysis excluding stepwise regression, featuring included variables, regression coefficients, correlations, and statistical errors.

MAPE  CVRMSE R?

x212

y8y10 yl7yl8 y18y21 y18?

y7y8

y7y10

y17 y18 y20 y21

yl6

y15

Orientations y0 y2 y3 y5 y9

Parameter
Peak load

0.95

3.71 %
4.40 %
3.66 %
4.29 %
3.70 %
2.56 %
3.23 %
4.34 %
3.12%
2.06 %
4.29 %
3.70 %
2.56 %
3.23 %
0.98

3.02 %
3.53 %
2.97 %
3.47 %
2.99 %
2.06 %
2.59 %
3.54 %
2.50 %
1.59 %
0.99

0.98

0.97

0.98

-5.2

17.34
53.86
15.1

—3.57
-3.77
—3.57
-3.77
—2.14

36.31

99.88
94.69

0.92

1.22 112 1.02
1.34 1.63 1.02
1.57 1.02 1.02
222 214 1.02

99.25

N

0.96

—52.43
—2.45

32.95
36.51
3

0.82
0.

109.75
99.05

0.95

99.45

92

0.97

0.96
0.

—44.27

58.54

5.7
37.02

102.81
99.35
54.01

0.92

1.02 0.92

3.45 3.22

111.18
57.73

99

-7.82 2.6

52.01 —-13.52 29.27
—-49.17 271
—66.4

—13.51

—3.42
-3.11

—3.53

-3.32

3.41
3.86
4.25

134.96
107.5

N

Annual load

0.98

—13.37 67.64

—13.23 71.09

55.17

3.48 3.18

0.9
0.97
0.9

2.76
—48.27 2.72
2.66
—183.02 5.71

75.09

—-13.3
—8.52

55.63
51.63

56.7

3.75 3.65
0.22 0.37

3.49 318
0.2

3.53 3.13

-3.15 -3.22
—-3.49 -3.55
.37

4,
2
0.18

78.6
94.91
65.69

0.95

18.01 %

10.84 %

3.1

0.005
0.003
0.004
0.005

0.32

0.34

-1.93
-8.21

-8.71
—8.63

20.43

-1.76
-2.33
-2.17
-2.16

—0.48

2619.39
2583.82

WE

0.96

16.11 %

11.70 %
12.66 %

3.09
3.42
3.43

—182.53 12.44

—204

16.96
17.3

0.3

0.15 1.08
0.02 4.03

0.02 4.21

17.97 % 0.97

—11.64 0.39

12.21
12.29

—10.05
—10.28

0.22 0.33

2932.26

0.97

0.96
0.97

18.14 %
4.80 %
6.58 %
6.55 %

13.77 % 20.10 %
—6.38 9.69 %

—0.03

—0.74

-11.88 0.39

—205.61

434.31
2.26
7.09

39.77 26.34

18.13

0.22 0.34
0.56 0.94

—7443.56

2965.65
588.59

6.49 %
8.42 %
8.45 %
8.60 %

0.97

0.02
0.02

—0.26
-0.27
—0.28
—0.26
0.03

~132
—24.4

—0.88
—-0.87

-0.9

—4.29
—8.58
-12.28

EQTC

0.97

616.67

0.97

0.98
0.97

6.81 %
7.90 %

5.87 %

0.02
0.02

—25.23
—25.33
-0.33

17
6.44

-1.61 -68.96

—0.86
-1.07

648.86
605.07
706.51
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Table 8
Performance metrics comparison with/without more interaction terms.
Indicator Metric CVRMSE MAPE R?
With interaction terms Peak load 2.46 % 2.75 % 0.99
Annual load 1.47 % 1.59 % 0.98
WE 10.11 % 9.31 % 0.97
EQTC 5.15 % 5.37 % 0.99
Without interaction terms Peak load 2.45 % 2.75 % 0.98
Annual load 1.58 % 1.69 % 0.99
WE 13.44 % 12.64 % 0.98
EQTC 5.31 % 5.56 % 0.98

Table 9
Estimated carbon emission reduction under selected retrofitting scenarios.
Scenario description Cooling load Emission Carbon
reduction (kWh/ factor (kg COz/  reduction (kg
m?/year) kwh) CO2/m?/year)
Optimized Indoor 40 0.45 18
Temp. Set-Point (26
°C)
SHGC Reduced from 50 0.45 22,5
0.9t0 0.4
Improved Glazing U- 35 0.45 15.75
value (5.8 - 1.8 W/
m?2K)
Window-to-Floor Area 30 0.45 135
Ratio Optimization
Combined Measures 70 0.45 31.5

(Integrated Design
Package)

Data availability
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