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A B S T R A C T

This study introduces an integrated predictive modeling framework for assessing building energy consumption 
and indoor thermal comfort, with a focus on supporting decarbonization efforts in both new construction and 
retrofit scenarios. A total of 21 critical design and operational parameters were evaluated using Monte Carlo 
simulations combined with EnergyPlus, enabling high-resolution analysis of cooling loads, thermal comfort 
performance, and retrofit outcomes. The proposed multi-variable regression model demonstrated strong pre
dictive accuracy, achieving an R² of 0.98, a mean absolute percentage error of 1.59 %, and a Coefficient of 
Variation of the Root Mean Square Error (CVRMSE) of 1.47 % in forecasting annual cooling demands. Optimi
zation of variables such as indoor temperature set-point, solar heat gain coefficient, and glazing U-values yielded 
energy savings of up to 70 kWh/m² annually, corresponding to a potential carbon emission reduction of 31.5 kg 
CO₂/m²/year, based on a regional electricity emission factor of 0.45 kg CO₂/kWh. The environmental quality 
thermal comfort index developed within this framework effectively quantified comfort conditions across varying 
scenarios, with values improving from 50 to 100 under optimized configurations. The model also revealed 
pronounced spatial variability, with perimeter zones reaching peak cooling loads of up to 198 W/m², empha
sizing the need for zone-specific design strategies.

1. Introduction

A compelling impetus exists to adopt sustainable practices in con
struction and retrofitting, as highlighted by global climate initiatives 
such as the Net Zero Emission Pathway, which sets ambitious carbon 
reduction targets [1]. Achieving these targets necessitates advanced 
strategies in predictive energy modeling and enhanced design standards 
to minimize the environmental impact of both new and existing build
ings [2,3]. Beyond compliance with tightening energy regulations, these 
strategies promote the integration of innovative technologies within the 
built environment. Elevating energy efficiency in building design serves 

as a vital mechanism for aligning industry practices with global energy 
reduction goals. Particular emphasis is placed on architectural design 
elements and socio-economic factors to support the holistic develop
ment of energy-efficient buildings [4]. This integrated approach ex
pands the scope of energy efficiency benefits to encompass social equity 
and economic viability, enabling the implementation of technically 
grounded designs that address diverse community needs [5]. Such a 
framework contributes to sustainable development objectives and en
hances urban resilience.

Within this global context, the pursuit of net-zero carbon buildings in 
Iraq reflects a national commitment to addressing climate change and 
modernizing the building sector. Central to this initiative is the 
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enhancement of energy performance in the existing building stock, 
which typically exhibits inefficiency and elevated carbon emissions [6,
7]. Retrofitting efforts involve deploying low-energy technologies and 
incorporating advanced materials and design practices. In new con
structions, emphasis is placed on precise energy-use prediction through 
simulation tools such as EnergyPlus and e-QUEST, which enable per
formance optimization during the design phase [8]. Regulatory ad
vancements further mandate high-efficiency standards across both 
existing and new buildings, driving adoption of modern technologies 
that reduce overall energy consumption [9].

1.1. Literature review

The imperative to decarbonize the building environment has drawn 
significant attention due to the pressing need to address climate change 
and enhance sustainability across both construction and retrofitting 
sectors. Within this framework, predictive modeling of building energy 
consumption and thermal comfort has become a central area of inves
tigation. Increasingly, research efforts aim to integrate advanced tech
nologies with empirical data to improve the precision of predictions, 
thereby informing strategies that facilitate the transition toward net- 
zero carbon buildings. Deb and Schlueter [10] conducted a compre
hensive review of data-driven modeling techniques applied to building 
retrofit scenarios, demonstrating the efficiency of various statistical and 
machine learning methods in forecasting and optimizing energy per
formance post-intervention. Albatayneh et al. [11] examined the critical 
influence of thermal comfort models on energy consumption prediction, 
underscoring their importance in sustainable building design. The 
findings, published in Sustainability, highlight the extent to which 
divergent thermal comfort models can yield substantially different en
ergy predictions, directly impacting decisions related to construction 
and retrofit planning. A key outcome of the study emphasizes the ne
cessity for standardization in the application of thermal comfort 
frameworks to enhance the reliability of energy prediction models.

In the pursuit of practical decision-making tools, Saad et al. [12] 
explored surrogate modeling techniques with a focus on multi-criteria 
analysis to support retrofitting strategies within decarbonization ef
forts. These models simplify complex decision-making processes by 
providing quantitative estimates of cost-benefit relationships among 
retrofitting alternatives, offering substantial value to policymakers and 
developers seeking to balance environmental and economic priorities. 
Arowoiya et al. [13] investigated the integration of digital twin tech
nology for improving both energy efficiency and thermal comfort in 
buildings. The study presented a state-of-the-art digital solution capable 
of producing dynamic, predictive performance models, illustrating the 
direction of future innovations in the field. Results indicate that digital 
twins represent a transformative advancement in predictive modeling 

by enabling real-time simulation and monitoring, which can signifi
cantly enhance both design and operational outcomes. Alghamdi et al. 
[14] developed a computational model that combines Monte Carlo 
simulation, EnergyPlus, and Artificial Neural Networks (ANN) to opti
mize predictions of energy consumption and thermal comfort. The 
model demonstrated strong performance, with R² values exceeding 0.97 
for both energy consumption and thermal discomfort metrics during 
training and testing phases. Field validation further confirmed its reli
ability, with mean relative errors of <2.0 % for total energy use and 
below 1.0 % for average thermal discomfort hours. These findings 
collectively underscore the rapid evolution of predictive tools in build
ing energy research and highlight the importance of integrating comfort 
and performance metrics into unified, high-accuracy models.

Energy performance and indoor thermal comfort in residential 
buildings, evaluated at both neighborhood and city scales, constitute 
foundational elements of urban design and planning. These factors exert 
substantial influence on environmental sustainability and the overall 
quality of life for urban populations. Energy performance encompasses 
the efficient application of energy resources to satisfy essential building 
functions such as heating, cooling, and lighting, while minimizing en
ergy consumption and maintaining comfort standards. Indoor thermal 
comfort, by contrast, is determined by a building’s internal environ
mental conditions, including air temperature, humidity, and airflow. 
These parameters must align with physiological and psychological 
thresholds to ensure occupant well-being. Braulio-Gonzalo et al. [15] 
introduced a methodology designed to predict energy performance and 
indoor thermal comfort across extensive residential building stocks at 
urban scales. A case study conducted in Spain demonstrated the inte
gration of historical energy consumption data with simulation tools for 
assessing and enhancing energy efficiency. The resulting methodology 
offered urban planners a scalable framework aligned with long-term 
sustainability goals for residential districts. Santamouris et al. [16] 
examined current and future challenges related to building energy 
consumption, emphasizing the urgency of decarbonization. The study 
identified key drivers of energy demand and presented a comparative 
analysis of decarbonization strategies, weighing their benefits and 
trade-offs.

Gabrielli and Ruggeri [17] developed an innovative model aimed at 
simplifying the retrofitting process for large building portfolios. The 
proposed model incorporated energy assessment tools and optimization 
algorithms to formulate effective retrofitting strategies. An uncertainty 
analysis component was included to evaluate the robustness of the 
model against unpredictable variables affecting energy performance. 
Rabani et al. [18] designed an integrated optimization framework that 
combined building energy simulation with computational fluid dy
namics and daylight analysis. This multi-faceted approach enabled 
optimization of building envelope design, fenestration configuration, 

Abbreviations and Nomenclature

ANN Artificial Neural Network
ASHRAE American Society of Heating, Refrigerating and Air- 

Conditioning Engineers
BIC Bayesian Information Criterion
CDD Cooling Degree Days
CFD Computational Fluid Dynamics
CDH Cooling Degree Hours
CVRMSE Coefficient of Variation of the Root Mean Square Error
EQTC Environmental Quality Thermal Comfort
GSR Global Solar Radiation
HVAC Heating, Ventilation, and Air Conditioning
IDF Input Data File
kWh/m² Kilowatt-hours per square meter

MAPE Mean Absolute Percentage Error
MLR Multi-Linear Regression
MRT Mean Radiant Temperature
OFAT One-Factor-at-a-Time
PMV Predicted Mean Vote
PPDI Predicted Percentage of Dissatisfied Index
R² Coefficient of Determination
SHGC Solar Heat Gain Coefficient
SRC Standardized Regression Coefficient
TMY Typical Meteorological Year
UBEM Urban Building Energy Model
U-value Thermal Transmittance (W/m²⋅K)
WE Weighted Exceedance Hours
WAP Weighted Average Prediction
Wh/m² Watt-hours per square meter
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and HVAC system parameters, resulting in substantial energy savings 
and enhanced occupant comfort. Two retrofit scenarios were applied to 
a generic office building located in Oslo, Norway, yielding reductions in 
total energy consumption by 77 % and 79 %, respectively, along with 
significant improvements in both thermal and visual comfort metrics. 
Jafarpur and Berardi [19] investigated the effects of climate change on 
energy consumption and thermal comfort in office buildings situated 
within Canada’s diverse climatic zones, including extremely cold, 
cold-humid, and cool-humid regions. The study revealed region-specific 
variations in projected temperature increases and their impact on 
building energy use. While heating demands were expected to decline, 
corresponding increases in cooling requirements were observed. Ad
justments to thermostat setpoints demonstrated potential reductions in 
annual energy consumption, ranging from 0.9 % to 8.7 % in Quebec 
City, 1.6 % to 9.1 % in Toronto, and 1.4 % to 9.9 % in Vancouver. These 
findings underscore the importance of climate-responsive building 
design and retrofitting strategies in mitigating future energy burdens 
across varying geographic contexts.

Building envelope retrofitting involves modifications to the external 
components of a structure including walls, roofs, windows, and doors 
with the objective of enhancing energy efficiency and improving indoor 
comfort. Such interventions can yield substantial energy savings by 
reducing the operational demands placed on heating and cooling sys
tems, thereby lowering overall energy consumption and associated 
costs. Martín-Consuegra et al. [20] present a comprehensive study 
focused on energy savings and thermal comfort improvements achieved 
through envelope retrofitting. The methodology integrates detailed data 
monitoring, occupant feedback through surveys, and simulation-based 
energy assessments to evaluate retrofit effectiveness. A key aspect of 
the study is the comparison between energy savings projected by stan
dardized energy certificates and the actual post-retrofit consumption 
data. Findings reveal notable discrepancies: while heating savings were 
less than anticipated approximately a 25 % reduction cooling energy 
consumption was reduced by up to 50 %, exceeding expectations. Araújo 
et al. [21] address the challenge of stakeholder involvement in the ret
rofitting process, particularly in the context of Évora, Portugal, where 
procedures have often been perceived as rigid and bureaucratic. The 
study introduces a user-friendly, open-source interface designed to 
support informed decision-making throughout the retrofit lifecycle. The 
predictive model developed demonstrates high accuracy, with co
efficients of determination reaching 0.84 and 0.79 for energy prediction 
metrics, highlighting significant potential for both energy reduction and 
financial return.

Mui et al. [22] contribute a hybrid simulation model tailored to es
timate residential cooling energy demands specific to Hong Kong’s cli
matic and architectural conditions. The model integrates multiple 
simulation methodologies to enhance precision, offering valuable in
sights for urban planners and engineers seeking to refine cooling stra
tegies in dense, high-rise residential environments. Walker et al. [23] 
investigate the influence of contextual variables on retrofit 
decision-making across different European regions. The study empha
sizes that the effectiveness of retrofitting strategies is highly dependent 
on regional climatic patterns, building typologies, and the regulatory 
landscape. Findings provide actionable guidance for customizing retrofit 
plans to regional circumstances, thereby increasing their potential for 
decarbonization impact. Aruta et al. [24] examine the application of 
advanced computational approaches—including genetic algorithms 
(GA) and ANN in model predictive control for heating systems in nearly 
zero-energy buildings. The methodology utilizes EnergyPlus weather 
datasets to simulate thermal behavior across economically varied winter 
conditions. Simulation results indicate that the optimized predictive 
control strategy achieved up to 26 % energy savings on the coldest, most 
energy-intensive day, February 28, compared to conventional fixed 
setpoint controls. These outcomes confirm the effectiveness of intelli
gent control algorithms in maintaining occupant comfort while 
advancing sustainable energy management practices in the building 

sector.
Minimizing energy consumption and decarbonizing building opera

tions constitute essential strategies for reducing the environmental 
impact of the built environment and combating climate change. Effec
tive implementation requires integration of energy-efficient technolo
gies and advanced design measures such as enhanced insulation, high- 
performance heating and cooling systems, and intelligent control 
mechanisms that manage real-time energy use. Shi et al. [25] assessed 
the decarbonization potential of China’s building sector using the China 
TIMES model, projecting an increase in energy use to 41.6 exajoules (EJ) 
by 2050 under a baseline scenario, with the potential to reduce this by 
up to 4 EJ through insulation improvements and technological ad
vancements. Jradi et al. [26] introduced a digital twin framework to 
optimize retrofit decisions in Denmark’s non-residential building stock, 
providing tools for energy performance enhancement, 
retro-commissioning, and policy guidance. Mata et al. [27] examined 
the economic feasibility of building retrofits in Sweden under five 
climate scenarios, concluding that near-term energy savings and upfront 
investment costs have a greater influence on profitability than long-term 
climatic uncertainties, particularly for strategies targeting space heating 
demand. González et al. [28] evaluated the impact of future climate 
conditions on historic buildings in Southern Europe, forecasting a 50 % 
rise in energy consumption to preserve human and artifact comfort, and 
underscoring the need for climate-adaptive retrofitting strategies. Dino 
and Akgül [29] investigated the implications of future overheating in 
Turkey, with simulations showing significant increases in cooling energy 
demand and reduced thermal comfort, reinforcing the urgency for sys
tem redesign and energy-sector decarbonization. Qu et al. [30] analyzed 
63 passive retrofit strategies for a nineteenth-century Victorian resi
dence in the United Kingdom, identifying vacuum-insulated glazing, 
infiltration control, and Polyisocyanurate insulation as the optimal 
combination, achieving a 51.8 % reduction in primary energy use and an 
18-year payback period. Energy-saving and life-cycle decarbonization 
retrofitting of buildings encompasses comprehensive strategies aimed at 
minimizing energy use and reducing greenhouse gas emissions 
throughout the operational life of a structure. Cecconi et al. [31] 
developed a decision support system that utilizes low-cost, data-driven 
methods, including clustering techniques and Monte Carlo simulations, 
to identify optimal retrofit scenarios for over one million residential 
units, offering a scalable and adaptable solution under the EU Green 
Deal. S. Lin et al. [32] applied a calibrated urban building energy model 
(UBEM) with a 20 % prediction threshold to assess retrofitting of historic 
and modern buildings on a Chinese university campus, showing energy 
savings ranging from 10 % to 505 %, with the highest gains achieved 
through photovoltaic systems. Tamer et al. [33] conducted long-term 
forecasts of building performance in Turkey using data-driven models 
over a 60-year horizon, revealing significant increases in cooling de
mands and greenhouse gas emissions, particularly in warmer regions. Xu 
et al. [34] presented an optimization methodology for school buildings 
in Nanjing, China, combining building envelope analysis, energy sys
tems, and occupancy data, achieving zero life-cycle carbon emissions 
through renewable integration and design efficiency. Thrampoulidis 
et al. [35] introduced a co-simulation and rolling-horizon forecasting 
model to test electricity demand flexibility during retrofitting, demon
strating that Swiss buildings can unlock considerable energy-use 
adaptability, essential for integrating intermittent renewable energy 
sources and improving energy management strategies.

Despite extensive research on energy efficiency and thermal comfort 
optimization, a significant gap remains in developing integrated models 
specifically designed for decarbonization in both new construction and 
retrofitting. Existing studies often address energy dynamics and comfort 
parameters in isolation, limiting their relevance for holistic building 
design and effective carbon mitigation strategies. Many current frame
works utilize advanced predictive analytics, yet lack the capacity for 
dynamic adaptation to real-time data and fluctuating environmental 
conditions. The absence of such adaptability restricts their utility in 
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practical, performance-driven applications. This gap underscores the 
necessity for innovative predictive models that unify energy consump
tion and thermal comfort while accommodating changing usage pat
terns and climatic variability. A comprehensive, adaptable tool is 
essential to support decarbonization goals across diverse building ty
pologies and operational contexts.

1.2. Study objective

The objective centers on developing a data-driven predictive 
framework for accurately modeling building energy consumption and 
indoor thermal comfort to inform decarbonization strategies in both 
new construction and retrofitting. The framework integrates simulation 
tools and advanced statistical modeling techniques, including multi- 
variable regression and machine learning, to evaluate energy perfor
mance under varying environmental and design conditions. Simulating 
different scenarios, the model enables quantitative assessment of energy 
demands and comfort outcomes, supporting optimized decisions 
regarding material selection, system configurations, and operational 
strategies. A core innovation lies in the unification of energy and com
fort metrics into a single analytical system, offering dynamic, real-time 
adaptability to changing usage patterns and climatic inputs. The 
framework also provides a comparative analysis of retrofitting alterna
tives, allowing stakeholders to identify the most cost-effective and 
environmentally beneficial solutions. This integrative approach ad
dresses gaps in existing literature by moving beyond isolated energy or 
comfort models and delivering a scalable tool aligned with sustainable 

design and net-zero carbon objectives.
The novelty of the study lies in the integration of building energy 

consumption and thermal comfort into a unified predictive modeling 
framework, addressing a longstanding gap in sustainable building 
research. Conventional approaches that treat these domains separately, 
the model employs advanced statistical and machine learning tech
niques to enable simultaneous assessment and optimization of both 
performance metrics. Real-time adaptability is embedded into the sys
tem, allowing dynamic responses to shifting climatic conditions and 
occupancy behaviors. The framework further distinguishes itself by 
simulating a broad spectrum of retrofitting strategies, offering predictive 
insights into cost-effectiveness and environmental impact. Incorporation 
of nonlinear dynamics and variable interactions enhances model accu
racy and relevance, delivering a robust tool suitable for diverse climatic 
zones and building typologies. This integrated, data-driven approach 
establishes a scalable foundation for next-generation smart building 
design and decarbonization planning.

2. Methodology

2.1. Building energy performance

A structured simulation and analytical approach were followed in 
the building energy performance as illustrated by the flowchart pre
sented in Fig. 1. First, design parameters such as internal gains, building 
physics, climatic conditions, and ventilation are identified and inte
grated into a building model. The model is important in determining 

Fig. 1. Methodological framework for building energy performance simulation and analysis.
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critical output variables. These variables are important in determining 
indoor thermal comfort and the overall energy efficiency of the building.

The methodology bifurcates into two distinct paths: firstly, Monte 
Carlo simulations are carried out with random sampling in order to 
create multiple EnergyPlus Input Data Files (IDF), allowing for the deep 
examination of possible building performance scenarios under diverse 
conditions [36,37]. These results from simulations then undergo 
rigorous processing in sensitivity analysis, main effects analysis, and 
stepwise regression to determine the important predictors and in
teractions affecting building performance. One further applies a multi
ple regression model so as to set up simplified linear prediction 
equations describing the nonlinear relations between design parameters 
and energy performance outputs [38,39].

The mathematical model in the study, however, is a multiple 
regression model that goes further than mere linear estimation of un
derstanding complex relationships between input variables and pre
dicted outcomes. This model is designed to explain not only the direct 
effects of individual variables but also to capture nonlinear impacts and 
interactions between different variables. These enhancements permit 
more detailed, accurate modeling of the interactive influences of some 
factors such as material properties and environmental conditions on 
building energy performance. Such a model is crucial for developing 
better performing building designs through an improved understanding 
of the interactions among all the elements impacting cooling load and, 
ultimately, in improving energy standards and building practices 
described as: 

U = α +
∑k

i=1
aizi +

∑k

i=1
biz2

i +
∑k− 1

i=1

∑k

j=i+1
cijzizj + ϵ (1) 

where, U is the predicted output, zi is the ith input, α is the intercept of 
the relationship, αi, bi, and cij are the regression coefficients for the 
linear, quadratic, and interaction terms respectively, and ϵ is the term of 
error.

A black-box model, therefore, helps in the analysis of building design 
strategies using historical data to make forecasts and understand the 
complicated relationships [40]. In this statistical approach, the outcome 
variable is modeled as a function of multiple independent variables 
capturing both direct and interactive effects. It is referred to as a 
black-box model because it pays attention only to the input-output re
lations and does not give clear, mechanistic insight into how the internal 
system works. Analyzing past performance data of buildings helps in 
deriving predictive insights through such models, which can be put to 
use for optimizing future building designs toward improved energy ef
ficiency and performance.

Monte Carlo analysis takes this further and complements the same by 
using statistical sampling techniques to effect robust simulations using a 
range of inputs, all drawn from probability distributions in modeling 
different scenarios related to building designs [41]. This is fundamental 
to understanding how uncertainties in the input variables arising from 
several sources such as material properties, climate, and usage patterns 
may affect the building’s performance. Each time a simulation is run, 
possible outcomes are created based on random sampling, and these 
collectively form a probability distribution of possible outcomes. Which 
offer designers and engineers a probabilistic view of building perfor
mance and allow the formulation of design strategies that are resilient 
and optimized under a range of possible conditions. The inclusion of 
quadratic terms in the model allows for consideration of nonlinear dy
namics between variables, while the interaction terms reveal how the 
interplay between pairs of variables affects the outcome. These inter
action terms help to explicate how the Solar Heat Gain Coefficient 
(SHGC) of glass combined with the window area affects the cooling load, 
describe as: 
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where, Gi be the function representing the relationship between inputs 
and the output for each observation i, M be the matrix size, j the input 
factors number, uij be the input variables, and wi be the output variable 
for each observation.

This work intends to assess the impact on four different outputs: Peak 
Cooling Load, the maximum instantaneous cooling demand for an 
overall considered period of time; Annual Cooling Load, that considers 
the total cooling energy need; Weighted Exceeding Hours, the number of 
hours during which an indoor environment violates specific comfort 
limits; and an overall indicator named EQTC, standing for Environ
mental Quality Indoor Thermal Comfort, to estimate the general indoor 
environment quality about the considered thermal environment. 
Moreover, such outputs are very important for green building certifi
cation because directly related to that are the criteria of energy effi
ciency and environmental impact, which constitute parts of any 
certification standard [42,43]. The choosing and defining of input pa
rameters of building simulation models is a pivot point since the accu
racy and relevance of analysis strongly depend on them.

This complexity becomes apparent due to the many variables 
affecting building performance, as all are interacting with each other in 
a dynamic built environment. The parameters include building geome
try, which determines the spatial characteristics and surface area 
exposed to environmental conditions that affect energy demands for 
heating and cooling [44]. The envelope thermo-physics is a factor 
involving thermal properties of materials used in building walls, roofs, 
and windows, which determine heat transfer rates and thus influence 
thermal loads and comfort levels inside the building [45]. The other 
major input parameter is HVAC system operation, including efficiency, 
design, and control systems of heating, ventilation, and air conditioning 
units [46]. They are imperative for indoor environmental quality and 
comfort, and the way they can function can hugely vary depending on a 
building’s design and patterns of use. Weather conditions become a 
basic parameter since variations in temperature, humidity, solar radia
tion, and wind can all hugely change a building’s thermal loads [46]. 
Architectural and engineering practices therefore impact the choice of 
technologies, design standards, and operational strategies that all 
determine how the building performs under various scenarios [47,48]. 
Those practices now integrate the concepts of sustainability and the 
innovations in building technology to reduce energy consumption while 
improving the comfort and health of building occupants. Those are the 
factors that require much attention and should be modeled accurately to 
ensure the simulations are realistic and add value to building design and 
operation.

2.2. Evaluation of indoor thermal comfort using EQTC

The EQTC metric offers a detailed assessment of both environmental 
and physiological parameters to evaluate indoor thermal comfort, 
ensuring alignment with occupant needs. Utilizing the Predicted Mean 
Vote (PMV) and Predicted Percentage of Dissatisfied (PPD) indices 
widely recognized thermal comfort measures EQTC bases its predictions 
on six key variables: clothing insulation, air velocity, metabolic activity, 
air temperature, relative humidity, and mean radiant temperature 
(MRT) [49,50]. Standardized inputs within the model assume a clothing 
insulation value of 0.55 clo, reflecting typical indoor conditions, and an 
air velocity of 0.15 m/s to represent gentle airflow [51,52]. Simulation 
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and analysis of these parameters are conducted using advanced building 
performance software such as EnergyPlus, allowing for high-resolution 
environmental modeling [53]. To assess performance across seasonal 
variations, the model calculates the percentage of time indoor condi
tions remain within defined thermal comfort classes, as outlined in 
Table 1. This approach enables year-round evaluation of continuous 
PMV values under a range of climatic and operational scenarios [54,55].

Thermal comfort conditions within a building can be systematically 
classified and quantified based on the frequency with which indoor 
environments remain within occupant-accepted comfort ranges. This 
classification framework incorporates multiple comfort levels, each 
assigned a specific weight to reflect its relative desirability or accept
ability. The cumulative sum of these weighted comfort levels forms the 
basis of the EQTC assessment, providing a comprehensive measure of a 
building’s effectiveness in sustaining optimal thermal comfort over a 
defined period.

Eq. (3) in the model provides a formula for calculating the EQTC, 
which integrates varying levels of comfort into a single metric. 

EQTC = I × 100 + II × 75 + III × 35 (3) 

Table 2 show the EQTC uses system levels to evaluate the thermal 
environment within a space, ranging from 0 to 100. This index divides 
into seven rating levels, each representing a different range of comfort.

During the evaluation process, the exceedance metric identifies each 
instance within a specified period such as a day or a year when indoor 
temperature surpasses the defined comfort threshold for a duration of at 
least one hour. In addition to frequency, the metric also accounts for the 
severity of exceedance, quantifying temperature deviations above the 
comfort range by specific margins, such as 1 ◦C or 5 ◦C.. 

WE =

∑n
i=1vihi

355
wherevi =

⎧
⎪⎨

⎪⎩

PPDIi

PPDImax
if PMVi ≥ 0.5

0 otherwise
(4) 

where, WE represent the duration of weighted exceedance, vi as the 
weighting factor for each time step, hi to represent the time step in hours, 
PPDIi as the PPDI at each time step, and PPDImax as the limit for comfort 
of PPDI.

2.3. Simulation model of a multi-floor open office building layout

A detailed simulation model of a multi-story mid-rise office building 
was developed to evaluate energy efficiency and the influence of 
architectural design on sunlight modulation. The structure is segmented 
into clearly defined thermal zones, including core zones and perimeter 
areas on each floor, with the perimeter spaces being directly affected by 
external conditions through the façade. As shown in Fig. 2, the model 
integrates overhangs positioned above the windows, quantified by the 
overhang projection ratio (depth-to-height), which play a pivotal role in 
reducing direct solar gain. These passive shading elements are particu
larly effective in limiting heat gain during summer months while 

Table 1 
Categorization and weighting of thermal comfort levels in EQTC assessment.

Category PMV Range Weight Description

I [− 0.1, +0.1] 100 Most comfortable, highest weight
II [− 0.3, +0.3] 75 Moderately comfortable
III [− 0.5, +0.5] 40 Least comfortable, lower weight

Table 2 
EQTC rating levels and score intervals.

Rating level Interval of EQTC

Level A 100–90
Level B 90–75
Level C 75–60
Level D 60–45
Level E 45–30
Level F 30–15
Level G 15–0

Fig. 2. Schematic representation of multi-floor open office building with overhang projection.
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permitting beneficial solar exposure during winter, when the sun’s angle 
is lower. This passive design strategy significantly enhances indoor 
thermal comfort within perimeter zones. The configuration exemplifies 
how architectural interventions can be used to optimize natural 
daylighting, lower building energy demands, and improve occupant 
comfort across multiple floor levels.

The building model defined by a given side dimension of 40 m and an 
aspect ratio between 0.6 and 2.5 modifies the building depth with regard 
to its width in such a way that it can accommodate diverse site con
straints and aesthetic preferences. It employs the 21 input variables 
listed in Table 3, covering a wide spectrum of design features crucial to 
the simulation and analysis of building thermal and energy dynamics.

Table 4 presents a comparative analysis of climatic parameters be
tween design day conditions and typical meteorological year data for 
three major cities. Temperature values are reported across various per
centiles, capturing the range from average to extreme heat conditions, 
and are accompanied by indicators related to cooling demand and solar 
radiation exposure.

2.4. Model validation

The model was validated using the following four key metrics: Co
efficient of Variation of the Root Mean Squared Error (CVRMSE), Mean 
Absolute Percentage Error (MAPE), Weighted Average Prediction 
(WAP), and Coefficient of Determination (R²) [56–58]. CVRMSE was 
used as a measure of the accuracy of the model predictions, relative to 
the scale of the observed data, thus showing the consistency of the 

model. MAPE measured the average size of the errors as a percentage, 
making it easy to interpret predictive accuracy. The WAP considered the 
importance of different predictions by weighting them, which gave a 
balanced assessment with varied data points. R² measured the propor
tion of variance in observed data explained by the model, giving an 
indication of the goodness-of-fit of the whole model. 

CVRMSE(%) =
100
D

×

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

k=1(dk − pk)
2

N

√

(5) 

MAPE(%) = 100 ×
1
N
∑N

k=1

⃒
⃒
⃒
⃒
dk − pk

dk

⃒
⃒
⃒
⃒ (6) 

WAP =
∑N

k=1

(
Sk

∑N
j=1Sj

)

pk (7) 

R2 =

∑N
k=1(pk − D)2

∑N
k=1(dk − D)2 (8) 

where, D is the mean of the actual values, N is the total number of ob
servations, dk is the actual data value for the kth observation, pk is the 
predicted data value for the kth observation, Sk is the area of the kth space 
or unit, and D is the mean of the actual data values

3. Results and discussions

The key findings derived from the simulation models, statistical 
analyses, and validation processes outlined in the methodology pre
sented in this section. The performance of the proposed predictive 
framework is evaluated in terms of energy consumption, indoor thermal 
comfort, and sensitivity to architectural and climatic variables. Valida
tion metrics are compared against relevant literature to assess accuracy 
and robustness, while parametric analyses explore the influence of 
design and operational factors. The results also highlight the effective
ness of passive design features, retrofitting scenarios, and zone-specific 
energy behavior, offering insight into optimized strategies for 
enhancing building energy performance and occupant comfort.

3.1. Nonlinear dynamics in MLR models through OFAT analysis

This section presents simulation results that offer critical insights 
into the nonlinear relationships between input variables and model 

Table 3 
Variables and their ranges in building design simulation.

Design Features Variable Description Range Remarks

Climatic Conditions y1 Max temp on design day 33.5–35.5 ◦C
y2 Daily avg cooling degree hours 55.6–65.6 ◦C-hour
y3 Daily avg global solar radiation 4.3–5.8 Wh/m2 Applies to perimeter zones only

Building Envelope y4 Aspect ratio 0.6–2.5 ​
y5 Floor-to-ceiling height 2.6–3.6 m Applies to perimeter zones only
y6 Building orientation − 180–180 degrees For model validation N, E, S, W
y7 Ratio of window to floor area 0.25–0.55 Applies to perimeter zones only
y8 SHGC of glass 0.31–0.77 Applies to perimeter zones only
y9 Thermal transmittance of glass (U-value) 1.8–5.8 W/m2⋅K Applies to perimeter zones only
y10 Projection ratio of overhang 0.01 –1.2 Applies to perimeter zones only
y11 U-value of wall 0.455–2.325 W/m2⋅K Applies to perimeter zones only
y12 Thermal mass of wall 300–700 kJ/m2⋅K Applies to perimeter zones only
y13 Absorptance of wall exterior surface 0.35–0.75 Applies to perimeter zones only

Internal Heat Sources y14 Thermal mass inside building 35–190 kJ/m2⋅K
y15 Power density of equipment 8–25 W/m2

y16 Lighting power density 5–18 W/m2

y17 Density of occupants 0.06–0.18 person/m2

y18 Metabolic rate of occupants 115–145 W/person
Airflow Characteristics y19 Air infiltration rate 0.01–0.2 Air Changes / Hour

y20 Air ventilation rate 0.45–1.55 l/s⋅m2

Thermal Control y21 Set-point of indoor temperature 25.0–27.0 ◦C

Table 4 
Climatic parameters for design day and typical meteorological year across 
selected three cities.

Climate Data Metric symbol Baghdad Mosul Basra

Design Day Temperature
Dry- (Wet-) bulb at 0.4 % 

occurrence
​ T 0.5 % 36.6 38.5 39.7

Dry- (Wet-) bulb at 1.0 % 
occurrence

​ T 1.5 % 35.4 34.2 34.4

Dry- (Wet-) bulb at 2.0 % 
occurrence

​ T 2.5 % 35.4 34.6 35.7

Typical Meteorological Year Data
Hours of avg. daily cooling 

degree
​ CDH 60.1 65.4 70.6

Avg. daily solar radiation ​ SR 4 4.5 4.5
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Fig. 3. Effect of building orientation on peak load.

Fig. 4. Effect of building orientation on WE and EQTC.
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outputs. The OFAT method was employed by systematically varying 
individual input parameters while holding others constant, enabling an 
isolated assessment of each variable’s influence on energy performance 
metrics [59,60]. This approach revealed complex interactions and 
nonlinear effects that are typically overlooked in conventional linear 
regression models. The analysis identified specific variables exerting 
strong nonlinear impacts on model predictions, reinforcing the necessity 
of incorporating nonlinear dynamics to ensure accurate representation 
of system behavior [61,62]. As illustrated in Fig. 3, the variation in both 
annual and peak cooling loads with respect to building orientation 
demonstrates a clear symmetrical trend. The annual load decreases from 
–180◦ to 0◦, reaching a minimum at 0◦, before rising again toward 180◦, 
suggesting that deviations from this central orientation result in 
increased energy demands. Similarly, the peak load exhibits elevated 
values around –150◦ and –120◦, followed by a decline toward 0◦, and a 
subsequent rise approaching 180◦. These findings highlight orientation 
as a key driver of energy performance, confirming the relevance of OFAT 
analysis for enhancing model precision and understanding the influence 
of baseline design parameters.

Fig. 4 presents the relationship between building orientation and two 
key performance indicators: EQTC and WEiTC. The top graph demon
strates that EQTC values generally range from approximately 12 to 18 h 
per day, with the highest performance occurring near 0◦ orientation. A 
gradual decline is observed as the orientation shifts toward –180◦ and 
180◦, where values reach their minimum. The lower graph illustrates a 

similar trend for WEiTC, which spans approximately 6 to 8 h per day. 
Peak values are again observed at 0◦, while orientations at the extremes 
show reduced performance. These symmetrical patterns indicate that 
both thermal comfort metrics are optimized around the central orien
tation, with significantly diminished efficiency and control at peripheral 
angles, highlighting the importance of orientation in passive design 
strategies.

Fig. 5(a) shows the relation between indoor temperature set-point 
and peak and annual load. As the indoor temperature set-point rises 
from 24 to 26 ◦C, the peak load drastically drops from 125 W/m² to 95 
W/m². A higher indoor temperature set-point tends to decrease the 
cooling demand during the peak time. The annual load also decreases 
with an increase in indoor temperature set-point: from 240 kWh/m² at 
24 ◦C to 200 kWh/m² at 26 ◦C. A clear trend arising here is that the 
higher the indoor temperature set-point maintained for the whole year, 
the larger the energy saved. Fig. 5(b) shows the dependence of WE and 
EQTC on indoor temperature set-point. As the indoor temperature set- 
point increases, WE decrease from 30 C◦⋅hour/day at 24 ◦C to 
0 C◦⋅hour/day at 26 ◦C, which is indicative of a direct relationship be
tween higher temperature set-points and reduced thermal discomfort. 
On the contrary, EQTC rises with increased indoor temperature set- 
points, rising from 0 at 24 ◦C to 100 at 26 ◦C.

Fig. 6(a) indicates the variation in peak and annual load due to 
SHGC. Peak and annual loads increase linearly with increasing SHGC 
from 0.4 to 0.9. In fact, the peak load increases from 100 W/m² at an 

Fig. 5. Indoor temperature set-point (a) load, (b) WE and EQTC.

Fig. 6. The SGH (a) annual load and peak load, (b) EQTC and WE.
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SHGC of 0.4 to 125 W/m² at an SHGC of 0.9. The annual load also rises 
from 200 kWh/m² to 250 kWh/m² within the same range of SHGC. 
These trends mean that higher SHGC values, relating to more solar heat 
gain via windows, result in significant increases in cooling demand and 
overall energy consumption. Fig. 6(b) presents the tendency of SHGC 
with WE and EQTC: as SHGC increases from 0.4 to 0.9, WE decrease 
from 30 C◦⋅h/day to 5 C◦⋅h/day, showing a decline in the state of 
thermal discomfort as the SHGC increases. On the other hand, EQTC 
drops from 100 to 50 with an increase in SHGC, indicating a drop in the 
thermal comfort index.

3.2. Spatial energy and thermal load simulations results

These outputs emulate a detailed energy performance of all building 
zones using EnergyPlus and Monte Carlo experiments. The result shows 
large differences in design peak loads and annual energy loads in 
perimeter compared to core zones. Specifically, the design peak load for 
the perimeter areas is between 54 and 198 W/m², while core areas have 
a peak load of between 42 and 106 W/m², as shown in Fig. 7. This dif
ference shows that the cooling loads of the perimeter zones are normally 
higher than those of core areas since they are directly exposed to outside 
thermal conditions.

Significant disparities are observed in annual energy loads between 
core and perimeter zones, with perimeter zones exhibiting a range from 
152 to 506 kWh/m², while core zones range between 142 and 395 kWh/ 
m². These variations have critical implications for energy management, 
emphasizing the necessity for zone-specific HVAC strategies to achieve 
optimized energy performance. In addition, the WE daily average metric 
serves as a valuable indicator for evaluating thermal comfort levels 
across different zones and for tracking temporal shifts in indoor envi
ronmental conditions throughout the day.

The EQTC values provide fundamental information concerning 
thermal comfort inside the building. Greater variability in EQTC values 
for perimeter areas compared to core areas indicates a greater need for 

dynamic and responsive climate control systems in the perimeter zones. 
This is very important for keeping indoor thermal comfort constant, 
hence improving the satisfaction of the occupants and reducing energy 
consumption. The obtained simulation results underline the importance 
of the distinction between core and perimeter areas for effective energy 
and comfort control.

Comparing the results, clear differences between core and perimeter 
areas in building thermal comfort indicators can be appreciated. Core 
areas: WE range between 0 and 36 h/d, indicating that this area would 
generally have a more stable thermal environment compared with the 
perimeter areas, which showed a WE ranging from 0 to 45 h/d. Such 
variability of the perimeter areas is due to their exposure in outside 
temperature oscillations, aside from sunlight absorption, hence it causes 
surface temperatures to rise—thereby making thermal comfort man
agement at the perimeter areas difficult to manage and becoming more 
dynamically controlled through HVAC systems. This also manifests 
through the EQTC scores, as all values pertain to an overall range be
tween 0 and 100 in both the core and perimeter zones. Nevertheless, 
with a surge in the temperatures along the perimeter zones, high values 
for PMV and PPDI demonstrate increased risks of suffering thermal 
discomfort. It is clear that such disparities require targeted strategies 
because maintaining consistent indoor comfort in the perimeter zones is 
vital for overall building efficiency and the comfort of occupants.

3.3. Sensitivity analysis results

Sensitivity analysis results, as illustrated in Fig. 8, reveal that 
different input parameters exert varying levels of influence on annual 
cooling load, peak load, work efficiency, and EQTC across perimeter and 
core zones. These variations highlight the zone-specific impact of design 
and operational factors on thermal and energy performance outcomes.

The peak load results show that the perimeter and core zones are 
sensitive to different extents by various parameters (y1 to y21). For the 
perimeter zones, the sensitivity coefficient values vary between − 0.1 

Fig. 7. Simulation indicators of annual energy loads and thermal comfort.
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and 0.5. The lowest sensitivity is that of y1, with a coefficient of − 0.1, 
which indicates a very slight negative influence on peak load. The 
highest sensitivity in perimeter zones is that of y7, with a coefficient of 
0.5, indicating a strong positive influence on peak load. In core zones, 
the coefficients range from 0 to 0.6. The most sensitive is y21 with a 
coefficient of 0.6, and the coefficients for a few parameters (y1, y2, y3) 
are equal to zero thus they do not affect the core zone.

3.4. Annual cooling load

Sensitivity analysis in the perimeter zones gives the coefficients be
tween − 0.2 and 0.5. The least sensitive is y1 with a coefficient of − 0.2, 
and the most sensitive is y7 with a coefficient of 0.5. Core zones have 
coefficients between 0 and 0.6; the highest sensitivity in y20 at 0.6 
suggests that this parameter imposes a strong positive influence. Similar 
to the peak load, some parameters (y1, y3) impose little or no effect on 
the annual cooling load within core zones.

From the sensitivity analysis, the coefficients for the perimeter zones 

are between 0 and 0.3. The most sensitive of all the perimeter zones is 
y15 at 0.3; hence, this has a very high positive effect on work efficiency. 
For the core zones, the sensitivities range between 0 and 0.5, with the 
highest being y19 at 0.5; hence, a strong positive impact on work effi
ciency. Coefficients representing many parameters in the core zones y3, 
y4 show zero coefficients, meaning they are not of importance in 
changing work efficiency.

For EQTC, the sensitivity coefficients range from − 0.5 to 0 in the 
perimeter zones. For the perimeter zones, y20 has the most negative 
coefficient of − 0.5, hence it exerts the strongest negative influence on 
EQTC. The core zones range from − 0.5 to 0.1. In that regard, only y1 
exhibits a feeble positive effect amounting to 0.1. Majority of the pa
rameters have negative coefficients; thus, they pull down EQTC in the 
core zones.

Sensitivity analysis results show that the influences of different pa
rameters on annual cooling load, peak load, work efficiency, and EQTC 
are different in both the perimeter and core zones. Parameters like y7, 
y20, and y21 have larger positive influences, especially in core zones, 

Fig. 8. The sensitivity analysis results indicating the varying impacts of different parameters on annual cooling load, peak load, WE, and EQTC in both perimeter and 
core zones.
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while parameters like y1 and y2 have lower or negative influences.
Sensitivity analysis results highlight the primary factors influencing 

annual cooling load and overall building performance. Among all vari
ables, the Cooling Degree Days (CDD24) demonstrates the highest 
Standardized Regression Coefficient (SRC) for annual cooling load, 
confirming that climatic variations significantly affect cooling demands 
and reinforcing the necessity of accurate climate data integration in 
energy modeling. Global Solar Radiation (GSR) ranks second in sensi
tivity, underscoring the impact of solar gains on energy performance and 
the critical role of solar control strategies in reducing consumption.

Envelope-related variables including the overhang projection ratio, 
window-to-floor-area ratio, and orientation emerge as key determinants 
in regulating solar heat gain. The orientation parameter, with a peak 
cooling load SRC of 0.44, reveals a substantial influence on thermal load 
distribution. The Solar Heat Gain Coefficient (SHGC) also exhibits strong 
sensitivity, as it directly governs the transmission of solar radiation 
through fenestration, thereby affecting internal heat accumulation. 

Although the U-value of the envelope shows comparatively lower 
sensitivity, results suggest that insulation alone offers limited energy 
savings without concurrent passive design measures. Regarding internal 
conditions, the temperature set-point records the highest SRC for EQTC, 
indicating a significant impact on thermal comfort. Additional contrib
utors include occupant density, lighting power density, and ventilation 
rate factors that collectively shape internal heat gains and thermal bal
ance. In contrast, internal thermal mass demonstrates relatively low 
sensitivity, suggesting a minimal effect on comfort compared to other 
operational variables. These findings offer a data-driven basis for 
prioritizing design and operational strategies that optimize both energy 
efficiency and occupant well-being.

Fig. 9 shows the SRC for the annual load versus peak load relation
ship in different zones. The result reveals the features of load distribu
tion and planning resource allocation efficiently across different zones. 
However, some variables such as room orientation (y6) exhibit diver
gent effects on annual versus peak cooling loads; that is, their 

Fig. 9. The variables of SRC in peak load and annual load.

Fig. 10. The variables of SRC in WE and EQTC.
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relationship does not follow the diagonal line. This would suggest that 
room orientation is a more subtle factor, having different effects on 
building energy performance depending on whether the focus is on peak 
or annual loads.

Fig. 10 presents a scatterplot of SRC for WE and EQTC, revealing an 
inverse correlation between the two metrics. The SRC values exhibit 
similar magnitudes but opposite signs, indicating that variables 
contributing positively to one metric tend to negatively influence the 
other. The close alignment in absolute SRC values suggests that both 
output variables respond to the same set of inputs in a consistent yet 
opposing manner, highlighting a trade-off between optimizing energy 
efficiency and thermal comfort.

Fig. 11 Scatterplot of SRC for annual cooling and EiTC load versus 
different input variables. It was found that some of the variables have 
high values of SRC on both EQTC and annual cooling load, indicating 
their crucial importance in the overall building performance. Similarly, 
room orientation (y6), window area ratio (y7), SHGC (y8), and overhang 
projection ratio (y10) all have large SRC values, which impose great 
influence on both thermal comfort and energy consumption. The tem
perature set-point (y21) and ventilation rate (y20) also show large SRC 
values, especially in regard to EQTC, which indicates that precise con
trol of these parameters is necessary to keep indoor comfort. The scat
terplot emphasizes the fact that while some variables may have a strong 
effect on both EQTC and annual cooling load, the nature of the influence 
can be quite different. This double visualization helps to understand in 
detail how various design and operational factors contribute to both 
thermal comfort and energy efficiency and lead to optimal building 
performance strategies.

3.5. Multi-Linear regression (MLR) model developed

The MLR model was developed using the MLR method for the pre
diction of peak load and WE in buildings. The performance of the models 
was evaluated using various statistical metrics, including R² values, 
MAPE values, and CVRMSE values. The R² values represent the pro
portion of the variance in the dependent variable that is predictable 
from the independent variables, where higher values indicate better 
model fit. Stepwise regression technique with both forward and back
ward elimination of variables was also used for model development in 
this regard in order to present the most likely predictors of MRL. To 
begin with, the forward selection technique added all variables to a 

model one by one according to their contribution on the basis of per
formance and evaluated inclusion using Bayesian Information Criterion 
(BIC). The BIC prevents overfitting by penalizing the number of pa
rameters in the model, ensuring that it only includes variables that 
provide a statistically significant improvement in the model. Overfitting 
occurs when the models are too complex and start capturing the noise in 
the data rather than the pattern of the data. Interpret results from the 
model: SRC were used to give a relative importance score to each pre
dictor variable. The analysis showed that variables like GSR have an 
important impact on the peak load and WE model, hence proving the 
usefulness of the MLR approach in understanding and predicting 
building energy performance.

Table 5 displays the results of a stepwise regression analysis, 
including introduced variables with their respective regression co
efficients, correlations, and statistical errors. Stepwise regression is one 
of the regression methods where the selection of the prediction variables 
is done through an automated procedure. The analysis highlights pa
rameters that significantly influence peak load, annual load, WE, and 
EQTC within renewable energy models. These regression coefficients 
represent the strength and direction of the influence of each variable. 
This detailed breakdown in the critical factors affecting building energy 
performance informs the development of more efficient renewable en
ergy models.

Results of a stepwise regression analysis are given in Table 5, where 
R² is an important metric presented for various dependent variables: 
peak load, annual load, WE, and EQTC. All R² values are very high, 
showing that models’ predictions are precise and vary between 0.92 and 
0.96 for peak load, 0.94 and 0.97 for annual load, 0.92 and 0.96 for WE, 
and 0.95 and 0.97 for EQTC. These R² values mean that the regression 
models explain a great deal of the variance in these variables, indicating 
their predictive power and reliability.

The MAPE and CVRMSE as measures of model accuracy and error. 
For the annual load, the MAPE falls within the range 1.6 % to 3.55 %, 
which is a low percentage error and an indication of high model preci
sion. On the other hand, WE have a higher MAPE range of 12.3 % to 
15.55 %, indicating greater variability and less precision in the pre
dictions for WE. Similarly, the CVRMSE for annual load ranges between 
1.1 % and 3.3 %, further emphasizing the accuracy of the model, while 
for WE, the CVRMSE ranges between 18.33 % and 25.5 %, further 
indicating higher error and lower reliability in the prediction of WE 
compared to the annual load. Percentages of explained variation for 

Fig. 11. The variables of SRC in EQTC and annual load.
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each variable further affirm the models’ robustness. The peak load 
variation explained ranges from 91 % to 96 %, annual load from 92 % to 
97 %, WE from 94 % to 96 %, and EQTC from 93 % to 96 %. The high 
percentages of explained variation underscore the effectiveness of the 
models in capturing the main trends and patterns in the data. Taken 
together, these metrics indicate that the models perform in a generally 
accurate and reliable way in predicting the respective variables, and that 
annual load and EQTC especially demonstrate strong performance 
metrics across all measures.

Table 6 presents a comparative analysis of validation metrics be
tween the proposed predictive model and several established models 
from the literature. The summary underscores the model’s robust per
formance in terms of accuracy and consistency, particularly when 
evaluated alongside other advanced simulation and machine learning 
frameworks.

Table 7 presents a comprehensive analysis conducted without 
applying stepwise regression, incorporating all input variables within 
the model framework. The reported correlation coefficients indicate the 
strength and direction of relationships among variables, while statistical 
performance indicators such as MAPE, CVRMSE, and R² are provided to 
assess model accuracy and reliability. This full-variable approach offers 
deeper insight into both direct and indirect effects, supporting evalua
tion of the model’s robustness and predictive capability.

3.6. Comparison of linear regression models with/without interaction 
terms

This section presents a comparative analysis of linear regression 
models with and without interaction terms, incorporating quadratic 
expressions to enhance predictive complexity and accuracy for building 
performance metrics. Model validity was evaluated using 650 inde
pendent simulation cases, assessing performance indicators such as peak 
load, annual load, WE, and EQTC. Accuracy verification against Ener
gyPlus simulation outputs confirmed the reliability and robustness of the 
proposed models. 

• Nonlinear terms and model accuracy: Incorporating nonlinear 
terms into the regression model has significantly improved its ac
curacy. This enhancement is evident in the Mean Absolute Percent
age Error (MAPE) reduction from 1.76 % to 1.42 %, indicating a 
more precise model. Additionally, the WE model, which assesses 
thermal comfort, shows a marked improvement in MAPE from 13.44 
% to 9.52 %.

• Simple linear models and peak load estimation: While simple 
linear models are effective in estimating certain aspects such as peak 
load, as shown in subplot (a), where R2 values are exceptionally high 
(0.97 and 0.99), they may not fully capture the intricacies of thermal 
comfort predictions. The R2 values indicate a strong correlation be
tween the predicted and actual peak load values, demonstrating the 
model’s robustness in this area.

• Simplified model for rapid assessment: The simplified regression 
model with nonlinear terms offers a practical solution for rapid 
assessment of cooling demand during the design stages of building 
projects. This model allows for quick and accurate predictions 
without the need for extensive computational resources, making it an 
invaluable tool for architects and engineers. Leveraging this 
enhanced model, professionals can make informed decisions early in 
the design process, optimizing building performance and ensuring 
efficient energy usage.

Table 8, gives the performance metrics of the regression models. The 
results across the board are better for the model with interaction terms, 
mainly in terms of model accuracy and quality of fit. In terms of annual 
load and WE indicators, the model with interaction terms has lower 
MAPE and CVRMSE. This model also has higher R2 values for peak load 
and EQTC indicators, which shows that it is better able to capture Ta
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complicated cross-variable relationships and make more precise 
predictions.

3.7. Carbon emission reduction potential

Achieving Net-Zero Carbon status in the building sector necessitates 
not only minimizing energy consumption but also accurately quanti
fying the resulting carbon emission reductions. Simulation outcomes 
from the current study indicate significant decreases in annual cooling 
loads through optimization of key parameters such as indoor tempera
ture set-point, glazing characteristics (SHGC and U-value), and window- 
to-floor area ratio. These energy savings translate directly into lower 
carbon emissions when applying the regional electricity carbon in
tensity. For instance, implementation of optimal temperature settings 
and passive architectural measures yielded cooling load reductions of up 
to 50 kWh/m² annually. With an emission factor of 0.45 kg CO₂/kWh, 
this corresponds to an estimated carbon reduction of 22.5 kg CO₂/m²/ 
year. Table 9 provides a summary of estimated emission reductions 
under various retrofit scenarios.

4. Conclusions

This study introduced a comprehensive predictive modeling frame
work designed to evaluate and optimize building energy consumption 
and indoor thermal comfort, with a specific emphasis on achieving Net- 
Zero Carbon targets. A detailed case study was conducted on a typical 
office building exposed to three distinct climatic conditions Baghdad, 
Basra, and Mosul using actual weather data and a range of 21 design and 
operational parameters. The objective was to assess and enhance cooling 
load performance and thermal comfort through targeted design and 
retrofitting strategies. The methodology integrated EnergyPlus simula
tions with Monte Carlo analysis and multi-linear regression (MLR) 
models incorporating both interaction and quadratic terms [63,64]. This 
enabled the capture of nonlinear relationships between critical design 
variables including SHGC, indoor temperature set-point, and 
window-to-floor area ratio and key performance indicators such as 
annual and peak cooling load, WE, and the EQTC index. The Results key 
findings: 

• The developed predictive model demonstrated high accuracy, with 
R² is 0.98, MAPE is 1.59 %, and CVRMSE is 1.47 %, confirming its 
reliability in estimating cooling loads and thermal comfort metrics.

• Optimizing the indoor temperature set-point from 24 ◦C to 26 ◦C 
reduced the peak cooling load from 125 W/m² to 95 W/m², 
contributing to significant energy savings without compromising 
comfort.

• Reducing the SHGC from 0.9 to 0.4 resulted in a decrease in annual 
cooling demand of up to 50 kWh/m², highlighting the effectiveness 
of glazing performance improvements.

• Combined retrofitting strategies optimizing set-point temperature, 
SHGC, and glazing U-value achieved total annual energy savings of 
up to 70 kWh/m².

• These energy savings correspond to a potential carbon emission 
reduction of 31.5 kg CO₂/m²/year, based on a regional emission 
factor of 0.45 kg CO₂/kWh.

• The EQTC index improved from 50 to 100 under optimal design 
configurations, indicating a substantial enhancement in indoor 
comfort.

• Spatial performance analysis showed higher cooling loads in 
perimeter zones (up to 198 W/m²) compared to core zones (as low as 
106 W/m²), emphasizing the importance of zone-specific HVAC and 
design strategies.

The outcomes validate the effectiveness of the modeling framework 
as a decision-support tool for enhancing energy efficiency, thermal 
comfort, and carbon reduction in building design and retrofitting. The 
approach is scalable, adaptable to diverse climate zones, and applicable 
for use by architects, engineers, and policymakers advancing Net-Zero 
Carbon building initiatives.

Study limitations

Despite comprehensive modeling techniques and extensive valida
tion processes, several limitations remain. The predictive framework 
primarily relies on simulation data and does not incorporate real-time 
adaptive behavior or occupancy variability beyond predefined sce
narios. Climatic inputs were restricted to selected cities within a specific 
geographical region, potentially limiting the generalizability of the 
findings to broader climate zones. The Monte Carlo analysis, while 
robust, utilized fixed parameter distributions that may not fully reflect 
the dynamic fluctuations found in real-world building environments. 
Furthermore, the model focused predominantly on cooling loads and did 
not extensively account for heating requirements or seasonal thermal 
performance variability. The EQTC metric, although comprehensive, is 
subject to assumptions inherent in the PMV-PPDI model, which may not 
fully capture the subjective comfort perceptions of all occupants. Future 
extensions may address these gaps through integration of real-time 
building performance data, broader climatic datasets, and advanced 
comfort modeling techniques incorporating behavioral and adaptive 
responses.
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Table 6 
Comparative validation metrics of the proposed predictive model with related literature.

Study / Model R² (Annual Load) MAPE ( %) CVRMSE ( %) Validation Method / Tool Reference

Current Study (MLR + Interaction Terms) 0.98 1.59 1.47 Monte Carlo + EnergyPlus Present Study
Alghamdi et al. (2024) – ANN + Monte Carlo >0.97 <2.0 – ANN + EnergyPlus + Monte Carlo [14]
Gabrielli and Ruggeri (2019) – Optimization model 0.95 2.5 2.0 Simulation + Uncertainty Analysis [17]
Jafarpur & Berardi (2021) – Climate setpoint model 0.94–0.97 1.6–9.1 – Energy simulation under climate scenarios [19]
Rabani et al. (2021) – CFD + Daylight + Energy – ~2.0 – Coupled simulation models [18]
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Table 8 
Performance metrics comparison with/without more interaction terms.

Indicator Metric CVRMSE MAPE R2

With interaction terms Peak load 2.46 % 2.75 % 0.99
Annual load 1.47 % 1.59 % 0.98
WE 10.11 % 9.31 % 0.97
EQTC 5.15 % 5.37 % 0.99

Without interaction terms Peak load 2.45 % 2.75 % 0.98
Annual load 1.58 % 1.69 % 0.99
WE 13.44 % 12.64 % 0.98
EQTC 5.31 % 5.56 % 0.98

Table 9 
Estimated carbon emission reduction under selected retrofitting scenarios.

Scenario description Cooling load 
reduction (kWh/ 
m²/year)

Emission 
factor (kg CO₂/ 
kWh)

Carbon 
reduction (kg 
CO₂/m²/year)

Optimized Indoor 
Temp. Set-Point (26 
◦C)

40 0.45 18

SHGC Reduced from 
0.9 to 0.4

50 0.45 22.5

Improved Glazing U- 
value (5.8 - 1.8 W/ 
m²⋅K)

35 0.45 15.75

Window-to-Floor Area 
Ratio Optimization

30 0.45 13.5

Combined Measures 
(Integrated Design 
Package)

70 0.45 31.5
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